EXHIBIT JC-1 (AMENDED)

BEFORE THE

NEW JERSEY BOARD OF PUBLIC UTILITIES

In The Matter Of The Verified Petition Of
Jersey Central Power & Light Company For Approval Of
An Infrastructure Investment Program II

("EnergizeNJ")

BPU Docket No. EO23110793

VERIFIED PETITION (AMENDED)

On Behalf Of Jersey Central Power & Light Company

February 27, 2024

STATE OF NEW JERSEY BOARD OF PUBLIC UTILITIES

In the Matter of the Verified Petition of Jersey
Central Power & Light Company For Approval of
An Infrastructure Investment Program II

An Infrastructure Investment Program II

("EnergizeNJ")

BPU Docket No. EO23110793

VERIFIED PETITION (AMENDED)

TO THE HONORABLE BOARD OF PUBLIC UTILITIES:

Petitioner, Jersey Central Power & Light Company (the "Petitioner," the "Company" or "JCP&L"), an electric public utility company of the State of New Jersey subject to the regulatory jurisdiction of the Board of Public Utilities (the "Board"), and maintaining principal offices at 300 Madison Avenue, Morristown, New Jersey 07962-1911 and 101 Crawfords Corner Road, Building 1, Suite 1-511, Holmdel, New Jersey 07733, in support of its above-captioned amended Verified Petition, respectfully shows:

OVERVIEW

1. By way of this Amended Verified Petition and its supporting testimony, the Company is proposing the JCP&L Infrastructure Investment Program II ("EnergizeNJ" or "Program"). EnergizeNJ is, with one minor exception, consistent with the Board's Infrastructure Investment and Recovery Rules ("II&R"), codified at N.J.A.C. 14:3-2A.1 et seq. See N.J.A.C. 14:3-2A.6(a) and (d). JCP&L is seeking a waiver of the provision of the II&R rules that states that "[r]ates approved by the Board for recovery of expenditures under an Infrastructure Investment Program shall be . . . recovered through a separate clause of the utility's Board-approved tariff." See N.J.A.C. 14:3-2A.6(d). Further, the JCP&L Program represents the Company's second proposal under the II&R Rules.

- 2. JCP&L filed its original Verified Petition in this matter on November 9, 2023. On February 2, 2024, the Company and parties to its then-pending base rate case in BPU Docket No. ER23030144 executed a Stipulation of Settlement ("Stipulation"). In the Stipulation, the Company agreed to amend the EnergizeNJ filing. More specifically, Paragraph 34 of the Stipulation states "The Company shall amend its current EnergizeNJ filing no later than February 29, 2024, to: (a) remove \$95 million identified in this case as HPC Phase I to meet the Company's three-year goals as set forth in Paragraph 29 above; and (b) to add the additional HPC Phase II work needed to remove the remaining 9 circuits from HPC list¹ as discussed herein above in Paragraph 30."
- 3. Administrative Law Judge Irene Jones issued an Initial Decision approving the Stipulation on February 5, 2024 and the Board issued an Order approving the Stipulation on February 14, 2024.
- 4. Accordingly, the Company is modifying the Grid Modernization and System Resiliency categories of EnergizeNJ, as discussed in more detail below, to: (1) remove \$94 million of capital expenditures related to the HPC Phase I work that will now be recovered through base rates; and (2) add an additional budget of \$90 million for the HPC Phase II work to address the remaining nine (9) circuits. Please see the Amended Direct Testimony of Dana I. Gibellino, Exhibit JC-2 (Amended) for additional details about these program modifications.
- 5. The Program proposal is comprised of three overarching main projects (two of which are impacted by this amendment) that are comprised of a total of fourteen component projects (four of which are impacted by this amendment) dispersed under each main category project. The proposal also serves the purpose of gap-closure relative to its expected reliability performance over the five-year period of 2024 through 2029 under the recently readopted and amended regulations

¹ "HPC" refers to "High Priority Circuits."

but, to the extent practical, in a manner consistent with laying a foundation for the Circuit of the Future approach, which is discussed in more detail below and in the Company's direct testimony as originally filed and as amended.

6. The intent of EnergizeNJ, as originally filed and as amended, is to accelerate investment to address pressing and/or current reliability and resiliency issues in a manner that begins to prepare and position the JCP&L electric distribution system to become the foundation for the Company's Circuit of the Future approach to providing electric distribution service.

INTRODUCTION

- 7. JCP&L is a New Jersey electric public utility primarily engaged in the purchase, transmission, distribution, and sale of electric energy and related utility services to approximately 1.1 million residential, commercial and industrial customers located within 13 counties and 236 municipalities of the State of New Jersey.
- 8. JCP&L files this Amended Petition to seek approval of EnergizeNJ, including its cost recovery mechanism, pursuant to N.J.A.C. 14:3-2A.1 *et seq.* and any other provision deemed applicable by the Board. JCP&L anticipates that the Program will be performed over a five-year period.
- 9. As described in the attached Amended Direct Testimony of Dana I. Gibellino, the proposed Program investments are directed to projects supportive of three main projects: Grid Modernization, System Resiliency and Substation Modernization.
- 10. EnergizeNJ, as amended, would result in the investment of approximately \$930.5 million (as compared to the original filing amount of \$935 million) over five years.
- 11. These accelerated investments will enable the Company to enhance the safety, reliability and resiliency of its electric distribution system. Projects undertaken through EnergizeNJ will provide benefits to JCP&L's customers and the State of New Jersey, including improvement

to the customer experience of reliability and system resiliency, and to accelerate the modernization of the JCP&L distribution system through advanced technologies, improved operational flexibility, and increased available distribution system capacity.

12. It is reasonable and prudent for JCP&L to provide for accelerated investments in its electric distribution system to enhance the long-term safety, reliability and resiliency of the system and the continued provision of safe, reliable and resilient service. JCP&L has developed EnergizeNJ to further these goals and is making this filing in conformance with the Board's II&R Rules. JCP&L respectfully requests that the Board approve this Program to provide for a capital investment of up to \$823.5 million, which amount excludes the 10% matching investment to be recovered through base rates.

BACKGROUND

- 13. On December 19, 2017, the Board adopted the II&R Rules to encourage utilities to implement infrastructure investment programs. These rules were codified at N.J.A.C. 14:3-2A.1 *et seq.* and initially became effective on January 16, 2018.
- 14. On July 13, 2018, JCP&L filed a petition for approval of its first Infrastructure Investment Program ("JCP&L Reliability Plus") at Board Docket No. EO18070728 for the period of 2019 through 2023.
- 15. On May 8, 2019, the Board issued a Final Decision and Order Approving Stipulation of the JCP&L Reliability Plus, with an effective date of May 18, 2019.
 - 16. The II&R Rules explain their purpose:
 - (a) This subchapter establishes a regulatory mechanism concerning an Infrastructure Investment Program, which will allow a utility to accelerate its investment in the construction, installation, and rehabilitation of certain non-revenue producing utility plant and facilities that enhance safety, reliability, and/or resiliency. Through an Infrastructure Investment Program approved by the Board, a utility may obtain accelerated recovery of qualifying investments, subject to the terms of this subchapter,

- and any other conditions set by the Board in approving an individual utility's Infrastructure Investment Program.
- (b) The purpose of an Infrastructure Investment Program is to provide a rate recovery mechanism that encourages and supports necessary accelerated construction, installation, and rehabilitation of certain utility plants and equipment. As set forth in this subchapter, such investment would occur in a systematic and sustained way to advance construction, installation, and rehabilitation of utility infrastructure needed for continued system safety, reliability, and resiliency, and sustained economic growth in the State of New Jersey.
- (c) The Board shall require frequent and detailed reporting of expenditures during all phases of an Infrastructure Investment Program, as set forth in this subchapter, in order to ensure prudent investment and compliance with this subchapter. [N.J.A.C. 14:3-2A.1]
- 17. JCP&L's proposed Program investments will: benefit JCP&L's customers and the State of New Jersey; comply with and further the purposes of the Board's II&R Rules; and accelerate the improvement of JCP&L's reliability performance to ensure safe, reliable, and resilient service.

ENERGIZENJ

18. EnergizeNJ benefits customers and New Jersey by providing for significant infrastructure investment to enhance the safety, reliability and resiliency of the Company's electric distribution system and promote economic growth in New Jersey and in JCP&L's service territory. JCP&L proposes to expend approximately \$930.5 million (compared with the original filing amount of approximately \$935 million) over five years in fourteen eligible electric distribution infrastructure projects, grouped in three Program categories:

Program Category	\$ 2024-2029 (millions)
Grid Modernization	\$271,282,524
System Resiliency	\$559,282,741
Substation Modernization	\$99,984,424
ENERGIZENJ TOTAL	\$930,549,689

This level of investment is over and above JCP&L's proposed annual baseline capital spending for the same period, which proposed capital baseline is \$147 million per year. JCP&L's proposed baseline spending is based on a five-year historical average of base capital expenditures. The Company plans to achieve capital expenditures of at least ten percent (10%) of the approved Program expenditures on projects similar to those proposed in JCP&L Reliability Plus during the course of the Program. These capital expenditures will be made in the normal course of business and recovered in future base rate proceedings. Such capital expenditures will not be recovered via the accelerated rate recovery mechanism described in the Direct Testimony of Ms. Pittavino, which is consistent with the II&R rules, N.J.A.C. 14:3-2A.2(c).

19. Over its total duration, EnergizeNJ will have a maximum cumulative bill impact on typical residential customers of approximately 3.3% of the average monthly bill. However, the average one-time incremental bill impact from any individual base rate adjustment over the course of the Program will be a fraction of that cumulative impact. Those modest impacts will afford substantial benefits to customers and the State. Customers will benefit from investments that will make JCP&L's electric distribution system safer, more resistant to outage events and able to recover more quickly from outages. The fourteen projects within three categories that make up EnergizeNJ and the associated benefits are summarized in the following paragraphs.

- 20. <u>Grid Modernization</u>. This category includes the following projects: Lateral Fuse Replacement with TripSaver II (replace existing fused cutouts with "TripSaver II" circuit-mounted reclosers); Stand Alone Reclosers (the installation of 3-phase devices to break up feeders to smaller groups of customers); Overhead Circuit of the Future (accelerated infrastructure upgrades with a focus on historically worst performing circuits); Underground Cable Replacement (replace underground cable with new, jacketed cable and associated switches and pad-mount transformers); and Selective Undergrounding (relocation of certain overhead facilities underground).
- 21. Projects within the Grid Modernization category focus on advancing the equipment and technology installed across JCP&L's distribution system. This category will begin to upgrade JCP&L's distribution circuits to align with JCP&L's vision of the "Circuit of the Future". With greater electrification, JCP&L anticipates that customer expectations will continue to increase with respect to reliability, power quality and seamless integration of distributed energy resources ("DERs"). To meet customer expectations, the Grid Modernization component of EnergizeNJ provides for greater operational flexibility and sets the stage for additional technology integration, storm hardening and greater capacity in key areas of the system. In response to the Stipulation, the Company has removed work locations associated with 18 circuits from the Circuit of the Future and Lateral Fuse Replacement with the TripSaver II component projects within the Grid Modernization category project. This work being removed from EnergizeNJ will occur as part of the HPC Phase I plan, as referenced in Paragraph 29 of the Stipulation. This removal from the original EnergizeNJ Program resulted in a reduction of \$94M in spending in the proposed amended Program consistent with paragraphs 32 and 34 of the Stipulation.
- 22. <u>System Resiliency</u>. This category includes the following projects: Distribution Voltage Standardization (create new tie opportunities between feeders); Circuit Ties with

Supervisory Control and Data Acquisition ("SCADA") (Loop Schemes) (install SCADA reclosers to automatically switch customer loads during outage events and replace conductors to provide increased capacity to, among other things, enable circuit ties); New Distribution Sources (install additional substation equipment such as circuit breakers or transformers in existing distribution substations); and Distribution Automation Enablement (install substation remote terminal units ("RTU"), SCADA visibility and control, and appropriate substation relays). As a result of the Stipulation, in accordance with Paragraph 30 thereof, the Amended EnergizeNJ filing proposes further improvements to the nine (9) Target Circuits that will not be removed from the HPC list following the completion of the HPC Phase I plan and will now be captured within the Amended EnergizeNJ Program, including reconfiguring certain circuits and/or adding new distribution sources. These are included in the Automated Circuit Ties with SCADA (Loop Schemes) and New Distribution Sources component projects within the System Resiliency category project. These HPC Phase II improvements have resulted in the addition of approximately \$90 million in these two System Resiliency component projects in the Amended EnergizeNJ Program.

- 23. Projects within the System Resiliency category will apply a distribution system contingency planning approach to further take advantage of opportunities to restore customers more quickly on the distribution system in the event of an outage. This category offers operational flexibility by adding capacity at existing or proposed new substations to support increased circuit ties. This category complements the Grid Modernization category with the installation of additional "smart" devices, such as SCADA-operated, and automatically operating, distribution line reclosers, and will prepare key areas of JCP&L's distribution system for full Distribution Automation.
- 24. <u>Substation Modernization</u>. Projects in this category include: Coastal Substation Switchgear Replacement (accelerates the replacement of switchgear in substations); Oil Circuit

Breaker Replacements (accelerates the replacement of distribution Oil Circuit Breakers); Protective Equipment Modernization (replaces Underfrequency Load Shed and Distribution Protection Unit relays with modernized protective equipment at an accelerated rate); RTU Upgrade (upgraded RTUs will provide enhanced data allowing the Distribution System Operator ("DSO") to implement restoration more rapidly for substation outages); and Mobile Substation Purchases (purchases of additional mobile substations will ensure JPC&L can facilitate outages to safely upgrade the system). There has been no change to the Substation Modernization category project or its component projects from the original EnergizeNJ filing.

- 25. Projects within the Substation Modernization category will accelerate the replacement of substation equipment to further enable advancing technologies on the distribution system. This category also increases SCADA visibility and control. Further, the equipment that will be added will be able to support Volt/VAR control in the future.
- Amended Appendix A to the Amended Direct Testimony of Dana I. Gibellino, EnergizeNJ is estimated to provide estimated benefits to customers from outage reductions driven by the System Average Interruption Frequency Index ("SAIFI") and the System Average Interruption Duration Index ("SAIDI") post-plan improvements having a net present value of \$937 million (as compared to \$846 million as originally filed), compared to estimated costs of \$931 million (including capital and expense), or a benefit to cost ratio of 1.24 (as compared to a ratio of 1.1 in the original EnergizeNJ filing).
- 27. EnergizeNJ will support economic development and job opportunities in New Jersey. In addition, enhancing the already reliable energy supply provided to customers in the JCP&L service territory, and providing additional or improved services or service delivery to

JCP&L customers through new technologies, this Program will encourage employers to locate businesses in New Jersey, maintain business operations in New Jersey and expand business operations in the State, which will result in opportunities for New Jersey residents to secure additional jobs. Moreover, outages cause residential, business and industrial customers to incur costs. A reduction in outages and their duration results in qualitative and quantitative benefits to all customers.

COST RECOVERY²

28. JCP&L proposes to recover the revenue requirements of EnergizeNJ through its base rates via annual and semi-annual base rate adjustment filings. While this proposal is generally consistent with the Board's II&R rules, codified at N.J.A.C. 14:3-2A.1 et seq., JCP&L is seeking a waiver of the provision of the II&R rules that states that "[r]ates approved by the Board for recovery of expenditures under an Infrastructure Investment Program shall be . . . recovered through a separate clause of the utility's Board-approved tariff." See N.J.A.C. 14:3-2A.6(d). JCP&L's cost recovery proposal, including an explanation of, and justification for, this waiver request, is described in the attached Amended Direct Testimony of Carol A. Pittavino.

29. JCP&L proposes to make seven annual and semi-annual base rate adjustment filings (i.e., base rate roll-ins) to recover revenue requirements. JCP&L anticipates that its first semi-annual base rate adjustment filing will provide for recovery of revenue requirements for plant placed into service through December 31, 2024, with rates effective on April 1, 2025. A detailed schedule for the anticipated EnergizeNJ rate filings is set forth in the attached Amended Direct Testimony of Carol A. Pittavino.

² Please note that the proposed cost recovery mechanism is the same as in the original EnergizeNJ filing.

30. The Company proposes that for each base rate adjustment filing, the revenue requirements associated with the Program's costs be calculated as follows: Pre-Tax Cost of Capital multiplied by the Rate Base then adding depreciation and/or amortization. The "Pre-Tax Cost of Capital multiplied by Rate Base" component provides recovery of the return on the Program investment. The term "Pre-Tax Cost of Capital" means JCP&L's pre-tax overall weighted average cost of capital ("WACC") for the Program. JCP&L proposes to earn a return on its net investment in EnergizeNJ based upon an authorized return on equity ("ROE") and capital structure including income tax effects. The Company's initial WACC for the Program will be based on the ROE, longterm debt and capital structure approved by the Board on October 28, 2020, in the 2020 JCP&L base rate case, BPU Docket No. ER20020146. JCP&L proposes the initial pre-tax WACC to be 9.13 percent.³ Any change in the WACC authorized by the Board in a subsequent base rate case will be reflected in the subsequent revenue requirement calculations and subsequent base rate adjustment filings for EnergizeNJ. Any changes to current tax rates will be reflected in an adjustment to the WACC. The term "Rate Base" refers to all plant constructed and in-service ("Plant In-Service") less the associated accumulated depreciation and/or amortization and less Accumulated Deferred Income Taxes ("ADIT"). The book recovery of each asset class and its associated tax depreciation will be based on current depreciation rates. The "Depreciation and/or Amortization" component provides for recovery of the Company's investment in the EnergizeNJ assets over the useful book life of each asset class. The Company will also apply the appropriate factor to collect applicable sales and use tax ("SUT").

_

³ JCP&L's WACC resulting from the 2023 base rate case in BPU Dkt. No. ER23030144 was approved by the Board on February 14, 2024. Therefore, the Board-approved overall rate of return in that matter of 9.13 percent shall be the initial WACC for the Program.

- 31. Board Staff and the Division of Rate Counsel ("Rate Counsel") will have the opportunity to review each semi-annual rate filing to ensure that the revenue requirements and proposed rates are being determined in accordance with the Board's Order approving EnergizeNJ. Further, in accordance with N.J.A.C. 14:3-2A.6(e), the rate adjustments established in the annual and semi-annual Program base rate adjustment filings will be provisional. The prudence of the Company's Program expenditures will be reviewed by Staff and Rate Counsel as part of JCP&L's subsequent base rate cases following the filings. The base rate changes via the annual and semi-annual adjustment filings are subject to refund until final determination in a base rate case by the Board that JCP&L prudently incurred these capital expenditures.
- 32. The Company proposes that it will file its next base rate case no later than five years after the start date of EnergizeNJ; the Program start date is proposed to be June 1, 2024, which, if approved, would make the next base rate filing due not later than June 1, 2029. JCP&L will continue to file annual and semi-annual rate filings during the Board-approved period for EnergizeNJ, notwithstanding the filing of a base rate case. Should the Company elect to file a base rate case before the conclusion of EnergizeNJ, that would also satisfy the base rate case filing requirement of the II&R regulations.
- 33. Consistent with the II&R rules, JCP&L will achieve capital expenditures of at least ten percent (10%) of the approved Program expenditures on projects similar to those proposed in JCP&L Reliability Plus during the course of the Program. Further, should JCP&L's ROE exceed the earnings test threshold of ROE plus fifty basis points, JCP&L would continue to recover on its capital investments associated with EnergizeNJ that have already been included in base rates; however, it would only be permitted to recover additional capital investments through a base rate

adjustment once its ROE was equal to or below the earnings test threshold or at the conclusion of its next base rate case, whichever comes first.

PREFILED TESTIMONY, SCHEDULES, EXHIBITS AND APPENDICES

34. Attached hereto and made a part of this Amended Verified Petition are the following Exhibits, including prefiled Amended Direct Testimony (which further includes schedules and appendices thereto):

Witness	Exhibit No.	Topics
Petition	JC-1 (Amended)	EnergizeNJ Overview
Dana I. Gibellino	JC-2 (Amended)	EnergizeNJ Capital Investments (Projects), Costs and Benefits, Baseline Capital Spend, Engineering Evaluation and Report, Reporting
Carol A. Pittavino	JC-3 (Amended)	Cost Recovery Mechanism, Revenue Requirements, Base Rate Adjustment Filings, Bill Impacts

Two of the Attachments to the Amended Engineering Evaluation and Report (attached as Amended Appendix A to the Amended Direct Testimony of Dana I. Gibellino) contain information considered to be confidential and are provided in both confidential and redacted form. Unredacted copies of these Attachments will be provided to parties who have executed the Agreement of Non-disclosure of Confidential Information for this matter.

PUBLIC HEARING, NOTICE AND SERVICE OF FILING

35. The Board must conduct a public hearing regarding EnergizeNJ pursuant to N.J.A.C. 14:3-2A.5(d). JCP&L proposes that two public hearings be held, one in each region of its service territory. JCP&L will shortly provide a draft form of public notice of the public hearings to Staff and Rate Counsel for comment, setting forth the dates, times and places of the public hearings, the

maximum dollar amount JCP&L seeks to recover through EnergizeNJ and the estimated overall impact on customers attributable to implementation of the Program. JCP&L proposes that notice of this filing be combined with notice of the public hearings and be published in daily and weekly newspapers published and/or circulated in the Company's service areas, after the dates, times and places of all such public hearings thereon have been scheduled by the Board or the Presiding Officer. The notice will also be served by mail upon the municipal clerks, the clerks of the Boards of Chosen Freeholders and, where appropriate, the County Executive Officers of all counties and municipalities located in the Company's service territory.

36. Copies of this Amended Verified Petition and of all appendices, supporting testimony (including schedules and exhibits thereto) have been or will be duly served upon the Department of Law and Public Safety, Division of Law, Richard J. Hughes Justice Complex, 25 Market Street, P.O. Box 112, Trenton, New Jersey 08625, and upon the Director, Division of Rate Counsel, 140 East Front Street, 4th Floor, P.O. Box 003, Trenton, New Jersey 08625-0003. In accordance with the Board's March 19, 2020 Order in BPU Docket No. EO20030254, copies of this filing will be submitted and served by electronic means only.

REQUEST FOR DIRECT BOARD REVIEW

37. The Program investment plans are based on a June 1, 2024, commencement date. JCP&L requests that the Board retain jurisdiction of this filing, directly review it, and designate a Commissioner as the Presiding Officer to oversee the proceeding. This has been the Board's customary practice with electric and gas utility infrastructure filings. The Board's direct review will facilitate the expeditious resolution of the Amended Petition and provision of reliability and resiliency benefits to customers and will ensure that the procedures utilized in the review of the filing are consistent with the II&R Rules. JCP&L requests that the Board issue a final decision and order no later than the date of its May 2024 Agenda meeting, currently scheduled for May 22, 2024.

38. Copies of all correspondence and other communications relating to this proceeding should be addressed to:

Michael Connolly, Esq. Gregory Eisenstark, Esq. William Lesser, Esq. Cozen O'Connor 1010 Kings Highway South Cherry Hill, NJ 08034

- and -

Mark A. Mader Carol A. Pittavino Jersey Central Power & Light Company 300 Madison Avenue Morristown, New Jersey 07962-1911

– and –

Tori L. Giesler, Esq.
James Austin Meehan, Esq.
FirstEnergy Service Company
2800 Pottsville Pike
P.O. Box 16001
Reading, Pennsylvania 19612-6001

CONCLUSION AND REQUEST FOR APPROVAL

WHEREFORE, the Petitioner respectfully requests that the Board issue a final decision and order:

- (a) finding that EnergizeNJ satisfies the requirements of <u>N.J.A.C.</u> 14:3-2A.l *et seq.*, and is in the public interest;
- (b) finding that EnergizeNJ as described in this Amended Petition is reasonable and prudent;
- (c) authorizing JCP&L to implement the Program starting June 1, 2024, under the terms set forth in this Amended Petition;

- (d) determining that the cost recovery mechanism set forth in this Amended Petition will provide for just and reasonable rates and is approved;
- (e) authorizing JCP&L to recover EnergizeNJ costs, on a full and timely basis, under the cost recovery mechanism set forth in this Amended Petition; and
 - (f) granting such other and further relief as the Board shall deem just, lawful and proper.

Dated: February 27, 2024 Respectfully submitted,

COZEN O'CONNOR, PC Attorneys for Petitioner, Jersey Central Power & Light Company

Gregory Eisenstarl

0765D9D5-CB46-4547-BDE9-D696194C53F4 --- 2024/02/26 15:12:34 -5:00 --- Remote Notary

STATE OF NEW JERSEY BOARD OF PUBLIC UTILITIES

In the Matter of the Verified Petition of Jersey Central Power & Light Company For Approval of An Infrastructure Investment Program II

VERIFIED PETITION (AMENDED)

BPU Docket No. EO23110793

("EnergizeNJ")

AFFIDAVIT OF VERIFICATION

Mark A. Mader, being duly sworn upon his oath, deposes and says:

- 1. I am Director of Rates & Regulatory Affairs New Jersey for First Energy Service Company, and I am duly authorized to make this Affidavit of Verification on behalf of Jersey Central Power & Light Company ("JCP&L"), the Petitioner named in the foregoing Amended Verified Petition.
- 2. I have read the contents of the foregoing Amended Verified Petition by JCP&L for approval of the proposed EnergizeNJ Infrastructure Investment Program, and I hereby verify that the statements of fact and other information contained therein are true and correct to the best of my knowledge, information and belief.

Mark Moder
Signed on 2024/02/06 15/24/01-500

Mark A. Mader

Commonwealth of Pennsylvania

:

County of York

Sworn to and subscribed before me this 26th day of February, 2024 by Mark A. Mader.

Kori Rebecca Auman-Krebs, Notary Public

Commonwealth of Pennsylvania - Notary Seal Kori Rebecca Auman-Krebs, Notary Public Berks County

My Commission Expires Feb 14, 2027 Commission Number 1345524

Notary Stamp 2024/02/26 13:24:01 PST

Notarial act performed by audio-visual communication

BEFORE THE

NEW JERSEY BOARD OF PUBLIC UTILITIES

In The Matter Of The Verified Petition Of Jersey Central Power & Light Company For Approval Of An Infrastructure Investment Program ("EnergizeNJ")

BPU Docket No. EO23110793

Of
Dana I. Gibellino
(Amended)

On Behalf Of Jersey Central Power & Light Company

February 27, 2024

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	SUMMARY	5
III.	PROGRAM PROPOSAL, COSTS AND BENEFITS	16
	Grid Modernization	19
	System Resiliency	21
	Substation Modernization	22
IV.	ANNUAL BASELINE CAPITAL SPENDING LEVELS	26
V.	REPORTING	34
VI.	CONCLUSION	35

OF DANA I. GIBELLINO

1		I. <u>INTRODUCTION</u>
2	Q.	Are you the same Dana I. Gibellino who submitted direct testimony in support of the
3		EnergizeNJ Petition filed on November 9, 2023, in BPU Docket No. EO23110793 and
4		has your business address remained the same?
5	A.	Yes, my name is Dana I. Gibellino. My business address remains FirstEnergy Service
6		Company, 101 Crawfords Corner Road, Suite 511, Holmdel, NJ 07733 (the "Service
7		Company" or "FESC").
8	Q.	Please identify your employer and describe your current position.
O	Q.	rease identity your employer and describe your current position.
9	A.	I am employed by FESC as the Director of Engineering Services for Jersey Central Power
10		& Light Company ("JCP&L" or the "Company"), a New Jersey public utility and one of
11		seven individual (or, in the case of Pennsylvania, consolidated) electric distribution
12		companies in the FirstEnergy Corp. ("FirstEnergy") holding company system. ¹ Prior to
13		my current position, I was the Manager of the JCP&L Distribution Control Centers. Over
14		my career, I have held a number of engineering and management positions at FirstEnergy.
15	Q.	Please briefly describe your educational and professional background.
16	A.	As I stated above, currently, I am the Director, Engineering Services at JCP&L. I have
17		worked at FirstEnergy in both transmission and distribution for over twelve years. I have

been in my current position since January of 2022, and I began working for JCP&L as the

¹ On January 1, 2024 (and after the filing of the original EnergizeNJ Petition), FirstEnergy's Pennsylvania operating companies (*i.e.*, Metropolitan Edison Company, Pennsylvania Electric Company, Pennsylvania Power Company, and West Penn Power Company) merged into the FirstEnergy Pennsylvania Electric Company.

Manager of the Distribution Control Centers in January of 2020. In my prior roles with FirstEnergy subsidiaries, I have directly managed several distribution engineering teams with responsibilities for capital portfolio and project management, engineering design, reliability, asset management and distribution planning. I started my career in one of the FirstEnergy Transmission Control Centers as a planning, reliability, and modeling support engineer. In this role, I guided Transmission System Operator decision making, coordinated with PJM Interconnection, LLC engineers on upcoming system conditions and communicated frequently with regional distribution teams.

Prior to joining FirstEnergy, I was a field service engineer at Emerson Process Management, where I supported the design and installation of power station control systems. I have a Bachelor of Science degree in Electrical Engineering from the University of Pittsburgh, with a concentration in Power.

- Q. What are your current job responsibilities as the Director of Engineering Services?
- 14 A. In my current position, I am responsible for the JCP&L distribution engineering
 15 organization, which includes distribution design, planning, protection, reliability, asset
 16 management and capital portfolio management.
- 17 Q. Have you previously testified in proceedings before the New Jersey Board of Public
 18 Utilities ("BPU" or "Board")?
- 19 A. No, other than for my Direct Testimony filed earlier in this proceeding, I have not.
 20 However, I have provided engineering and business support to other Company witnesses
 21 in other proceedings with respect to their testimony. For instance, I most recently provided
 22 support in connection with the Direct Testimony of Mr. Dennis Pavagadhi in the

1 Company's 2023 Base Rate Filing (Exhibit JC-5), which is currently pending before the Board.

3 Q. What is the purpose of your amended direct testimony?

The Board's rules at New Jersey Administrative Code ("N.J.A.C.") 14:3-2A. et seq., ("II&R Rules") establish a regulatory mechanism for an Infrastructure Investment Program ("IIP"), which encourages and supports necessary accelerated construction, installation, and rehabilitation of certain utility plants and equipment. Accordingly, my testimony will support JCP&L's request for Board approval to implement its proposed IIP as amended in a limited way as explained below ("EnergizeNJ" or the "Program") pursuant to the II&R Rules, which was initially filed on November 9, 2023. My testimony is being amended as a result of the Stipulation of Settlement approved by the Board on February 14, 2024, in the Company's base rate case in BPU Docket No. ER23030144 (the "Stipulation"). The Stipulation provides that the Company would make certain amendments to the EnergizeNJ Petition by February 29, 2024My Amended Direct Testimony supports the engineering and programmatic aspects of the EnergizeNJ Petition as Amended. In furtherance of this objective, I am sponsoring the Company's EnergizeNJ Engineering Evaluation and Report as amended ("Amended Engineering Report" or the "Amended Report"), which is being filed in this proceeding in accordance with II&R Rules (a true and correct copy of the Amended Engineering Report is attached hereto as Appendix A). The Amended Report addresses the various details of JCP&L's proposed Program as amended, as described in its Amended Verified Petition and in the supporting testimony and other exhibits attached thereto. More specifically, the Amended Engineering Report addresses the requirement of

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

A.

1		the II&R at N.J.A.C. 14:3-2A.5(b), which provides the petition requirements, including the
2		following requirement:
3 4 5 6 7		3. An engineering evaluation and report identifying the specific projects to be included in the proposed [IIP], with descriptions of project objectives-including the specific expected resilience benefits, detailed cost estimates, in service dates, and any applicable cost-benefit analysis for each project;
8		In addition, I will re-introduce three main projects and fourteen component projects that
9		constitute the Program as amended, which are described in further detail in the Amended
10		Report. To be clear, only two of the three main projects and four of the fourteen component
11		projects are directly impacted by the amended filing.
12		Also, my testimony discusses how EnergizeNJ satisfies the other requirements and
13		furthers the goals of the II&R Rules. In this regard, I think it important to mention that, in
14		addition to my amended testimony, the EnergizeNJ Verified Petition, as Amended, also
15		includes testimony from Carol A. Pittavino (Exhibit JC-3 (Amended)) to address the
16		revenue requirements calculation for the Program, including the associated cost recovery
17		methodology, cost of removal and other requirements related to base rate adjustment
18		filings, bill impacts, and tariffs over the Program's proposed five-year term.
19	Q.	Please describe the attachments to this testimony.
20	A.	I have attached the following appendices and schedules setting forth information required
21		by the II&R rules:
22		1. Appendix A (Amended) – The Amended Engineering Report.
23		2. Appendix B - A redline document showing the changes between the
24		original Engineering Report and the Amended Engineering Report.

1		3. Schedule DIG-1 (Amended) – JCP&L forecasted/budgeted Annual
2		Baseline Capital Spending Levels 2024-2029, including designation of an amount
3		equal to 10% of the total proposed Program capital expenditures.
4		4. Schedule DIG-2 – JCP&L Actual Capital Expenditures for the past five
5		years (2018-2022), by major expenditures.
6		5. Schedule DIG-3 (Amended) – EnergizeNJ Total Proposed Program Capital
7		Expenditures 2024-2029.
8		II. <u>SUMMARY</u>
9	Q.	Please summarize the JCP&L Amended IIP-2 proposal.
10	A.	The II&R rules provide an opportunity for increased Company spending to accelerate
11		projects beyond what historically has been required for system reliability, resiliency, and
12		safety. In the Company's view, it is now appropriate to pursue a second IIP. Ultimately,
13		JCP&L plans to utilize its Program to drive incremental reliability improvements and to
14		prepare the grid for New Jersey's clean energy future through an accelerated programmatic
15		modernization of the distribution system. EnergizeNJ is generally described in this
16		amended direct testimony and detailed more fully within the accompanying Amended
17		Engineering Report to reflect the relevant provisions of the Stipulation.
18	Q.	What are the Relevant Provisions of the Stipulation for the Amended EnergizeNJ
19		proposal?
20	A	There are three paragraphs from the Stipulation under the heading of "EnergizeNJ and Cost
21		Recovery" that are relevant to this discussion. They are as follows:
22 23 24 25		32. The costs associated with HPC Phase I plan will be recovered through base rates. The estimated capital cost for HPC Phase I is \$95 million; however, provided that these costs are prudently incurred, JCP&L should not be precluded from seeking recovery for

1	amounts in excess of \$95 million if such additional expenditures are
2	necessary to accomplish the objectives. JCP&L may, at its
3	discretion, seek recovery for plant placed in service in subsequent
4	base rate cases subject to the Elizabethtown Water standards. The
5	\$95 million HPC Phase I costs placed in service will also include
6	any associated Allowance for Funds Used During Construction
7	("AFUDC").
8	
9	33. The Signatory Parties agree that the improvements made to the
10	18 Target Circuits will be eligible for future cost recovery, subject
11	to prudence review. In addition, Staff and Rate Counsel also agree
12	to support the Company's siting applications related to the HPC
13	Phase II work to the extent reasonably practicable, subject to review
14	of each siting application. Furthermore, the Signatory Parties
15	acknowledge that JCP&L is experiencing long lead time for certain
16	substation equipment, which may or may not impact the completion
17	of the HPC Phase II work.
18	
19	34. The Company shall amend its current EnergizeNJ filing no later
20	than February 29, 2024, to: (a) remove the \$95 million identified in
21	this case as HPC Phase I to meet the Company's three-year goals as
22	set forth in Paragraph 29 of the Stipulation; and (b) to add the
23	additional HPC Phase II work needed to remove the remaining 9
24	circuits from the HPC list as discussed in Paragraph 30 of the
25	Stipulation. The Signatory Parties reserve all rights to take any
26	position regarding the EnergizeNJ filing. ²
27	The changes reflected in the Amended Engineering Report and in this Amended Direct

Testimony are intended to implement these provisions from the Stipulation.

29. Under its HPC Phase I plan, JCP&L will invest and conduct planned improvements for each of the 18 high-priority circuits over a three-year period, beginning no later than March 1, 2024. The HPC Phase I plan will lead to the ultimate removal of 9 of the 18 target circuits from the HPC list following conclusion of the Phase I planned work.

30. JCP&L will amend its pending EnergizeNJ Petition in BPU Docket No. EO23110793, originally filed on November 9, 2023, to include its HPC Phase II plan. The Company will file the amendment no later than February 29, 2024, which will propose further improvements to those 9 Target Circuits that will not be removed from the HPC list following the completion of the HPC Phase I plan. These improvements are expected to include reconfiguring certain circuits and/or adding new distribution sources. The HPC Phase II plan will outline expected siting requirements to support the plan. The Signatory Parties reserve all rights with regard to positions taken on the EnergizeNJ Petition and its amendments.

6

² Paragraphs 29 and 30, which are referenced here state as follows:

1 Q. Please describe the Amended Engineering Report.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

A.

In short, the Amended Engineering Report is comprised of an executive summary, introduction, a description and discussion of the JCP&L service territory, a review of the II&R Rules for an IIP filing, and a description and discussion of JCP&L's recent distribution reliability system experience and performance. Much of the Amended Engineering Report is devoted to describing the three main projects and the fourteen component projects including, among other things, discussions of the identified problem(s) that the projects and component projects are intended to address, the nature and extent of the proposed resolution that such projects are intended to provide, the criteria for the selection of the projects as such resolutions, the number of project locations involved, as well as the costs and benefits associated therewith – as impacted by the Stipulation. In addition, the Amended Engineering Report discusses and provides the basis and results of the EnergizeNJ cost-benefit analysis consistent with the requirements of N.J.A.C. 14:3-2A.5(b)3 and the terms and conditions of the Stipulation. In its attachments, the Amended Engineering Report provides details including detailed cost estimates and in-service dates as influenced by the Stipulation. It is worth mentioning, however, that the level of cost and in-service detail varies depending on the amount of information and certainty available at the time of filing. Those projects with earlier in-service projected dates have, in many instances, more details than those with projected in-service dates extending over the later part of the proposed five-year term of the Program. In this regard, the Company intends to update the Amended Engineering Report cost information from time to time as such information becomes available, in accordance with the proposed reporting provisions outlined later in this amended testimony. Finally, the Amended Engineering Report

explains how the acceleration of the investments and associated improvements through EnergizeNJ will also support economic stimulus and job creation within JCP&L's service territory, and will support highly-skilled, good-paying union jobs in the state through the use of external contractors in the implementation of its various and extensive projects and component projects.

Q. What are the projects and component projects proposed in EnergizeNJ?

EnergizeNJ proposes an investment of approximately \$931 million (as compared to \$935 million as originally filed) over five years for three main projects that are comprised of a total of fourteen component projects. The three main projects are: (1) Grid Modernization, (2) System Resiliency, and (3) Substation Modernization. These incorporate fourteen component projects which are intended to set the foundation for the Company's Distribution Circuit of the Future vision, and which will be discussed further herein and in the Amended Engineering Report. These efforts will be achieved through a portfolio of accelerated capital projects that will upgrade the electric distribution system with an eye to the future by incorporating new equipment, reflecting currently available technology while at the same time responding to evolving customer expectations and enhancing overall system reliability, resiliency and safety, and recognizing the Board's most recent revisions to how regulatory reliability metrics are calculated. This approximate \$931 million amount reflects a reduction from the approximate \$935 million originally proposed for Energize NJ and includes the removal of the approximate \$94 million identified in the Stipulation as for HPC Phase I, as well as additional spending of approximately \$90 million.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

A.

- 1 Q. Can you provide a project and spending overview of EnergizeNJ?
- 2 A. Yes. The three main projects, the component projects, and associated projected investment
- 3 amounts are set forth in Table 1 below:

4 <u>Table 1</u>

Projects	Components	Proposed Dollars	Proposed Start Date	Proposed End Date
	Lateral Fuse Replacement with TripSaver II	\$ 17,586,500	Jun-24	Jun-29
Grid	Distribution Circuit of the Future	\$ 214,571,149	Jun-24	Jun-29
Modernization	Circuit Protection & Sectionalization	\$ 3,315,000	Jun-24	Mar-29
	UG Cable Replacement	\$ 30,612,375	Jun-24	Jun-29
	Selective Undergrounding	\$ 5,197,500	Jul-24	Jun-29
	Distribution Voltage Standardization	\$ 304,088,582	Jun-24	Jun-29
Caratana	New Distribution Sources	\$ 140,215,390	Jun-24	Jun-29
System Resiliency	Automatic Circuit Ties with SCADA (Loop Schemes)	\$ 83,444,890	Jun-24	Jun-29
	Distribution Automation Enablement	\$ 31,533,879	Jun-24	Jun-29
	Replace Coastal Substation Switchgear	\$ 18,995,960	Jul-25	Jun-29
Substation	Oil Circuit Breaker (OCB) Replacements	\$ 13,263,964	Jan-25	Jun-29
Modernization	Modernize Protective Equipment	\$ 21,139,420	Jun-24	Jun-29
	Remote Terminal Unit (RTU) Replacements	\$ 34,985,080	Jun-24	Jun-29
	Mobile Substations	\$ 11,600,000	Jun-26	Jun-29
	Totals	\$ 930,549,689	Jun-24	Jun-29

- 6 Q. Can you provide an overview of the differences between the original EnergizeNJ
- 7 proposal and the Amended EnergizeNJ proposal?
- 8 A. Yes. Please see Table 2 below:

1 <u>Table 2</u>

Projects	Components	Or	iginal Filing	An	nended Filing	Di	ifference		Totals
	Lateral Fuse Replacement with TripSaver	\$	18,487,500	\$	17,586,500	\$	(901,000)]	Reduction:
Grid	Circuit of the Future	\$	307,985,058	\$	214,571,149	\$	(93,413,909)	\$	(94,314,909
Modernization	Delta Circuit Protection & Sectionalization	\$	3,315,000	\$	3,315,000	\$	-		
	UG Line Replacement	\$	30,612,375	\$	30,612,375	\$	-		
	Selective Undergrounding	\$	5,197,500	\$	5,197,500	\$	-		
	Distribution Voltage Standardization	\$	304,088,582	\$	304,088,582	\$	-		
System	New Distribution Sources	\$	69,572,181	\$	140,215,390	\$	70,643,209		Addition:
Resiliency	Loop Schemes	\$	63,988,451	\$	83,444,890	\$	19,456,439	\$	90,099,64
	Distribution Automation Enablement	\$	31,533,879	\$	31,533,879	\$	-		
	Replacement of Coastal Switchgear	\$	18,995,960	\$	18,995,960	\$	-		
Substation	Substation OCB Replacement	\$	13,263,964	\$	13,263,964	\$	-		
Modernization	Modernize Substation Protective Equipment	\$	21,139,420	\$	21,139,420	\$	_		
	RTU Upgrades	\$	34,985,080	\$	34,985,080	\$	-		
	Mobile Substations	\$	11,600,000	\$	11,600,000	\$	-		
	Totals	\$	934,764,950	\$	930,549,689	\$	(4,215,261)	\$	(4,215,261

Q. Please provide an overview of the changes made to EnergizeNJ to accommodate the
 agreement set forth in the Stipulation.

As part of the Stipulation, the Company has removed work locations associated with 18 circuits from the Circuit of the Future and Lateral Fuse Replacement with the TripSaver II component projects within the Grid Modernization category project. This work will instead occur as part of the High Priority Circuit ("HPC") Phase I plan, as referenced in Paragraph 29 of the Stipulation. This change resulted in a reduction of \$94M in spending in the proposed IIP program, consistent with paragraphs 32 and 34 of the Stipulation. Also, in accordance with Paragraph 30 of the Stipulation, within the Amended EnergizeNJ filing, the Company proposes further improvements to the nine (9) Target Circuits that will not

5

6

7

8

9

10

11

12

A.

be removed from the HPC list following the completion of the HPC Phase I plan. These improvements include reconfiguring certain circuits and/or adding new distribution sources and are now included in the Automated Circuit Ties with SCADA (Loop Schemes) and New Distribution Sources component projects within the System Resiliency category project. These HPC Phase II improvements have resulted in the addition of approximately \$90M in these two project components of the EnergizeNJ Program. In all other respects, the Company's original EnergizeNJ proposal and the Amended Energize NJ proposal are the same, unless noted otherwise.

- 9 Q. Please outline any additional expected requirements to support the HPC II plan.
- 10 Within this Amended EnergizeNJ proposal, there are eight additional New Distribution A. 11 Source component project locations. The Company expects these new locations will 12 require either the expansion of existing JCP&L substations or acquisition of new property 13 to accommodate this work. Such expansion and acquisitions can also involve other land 14 use issues including environmental requirements, zoning or other permitting 15 authorizations. Additionally, at least six of these projects are expected to require work at above distribution voltage levels, the costs of which are not included in this Amended 16 17 EnergizeNJ filing. The Company has engaged both its real estate and transmission 18 planning organizations to initiate the detailed engineering planning phases for these 19 projects.
- Q. Will any of the proposed category projects and component projects result in increased maintenance costs?
- A. The Company will perform maintenance on new equipment and devices in accordance with and as prescribed by its preferred practices. With the enhanced visibility and

1

2

3

4

5

6

7

communication of proposed distribution devices within this Program, however, the Company expects a reduction in troubleshooting time to determine outage locations and causes. This benefit is captured as customer minutes of interruption, or CMI, savings in the benefit to cost ratio, but it should be noted that the Company expects maintenance savings through the execution of the EnergizeNJ Program as well.

Q. Why does the Company think now is the time for this Program proposal?

As a matter of background, and as further discussed in the Amended Engineering Report, JCP&L did not meet the 2022 minimum SAIFI performance for either its Northern or Central Operating Regions. In addition, JCP&L anticipated certain other challenges with respect to the Company's immediate performance against the BPU's recently revised reliability performance metrics. Such anticipated challenges arise from the Board's readoption with amendments of regulations at N.J.A.C. 14:5, as published in the New Jersey Register (55 N.J.R. 312(b)) on, and effective as of, February 21, 2023. The new amendments to the readopted regulations with respect to the definition of a "Major Event," and the change to an annual reformulation of the metrics to reflect the most recent fiveyears of prior performance, are anticipated to result in new benchmark and minimum reliability performance requirements as compared to those existing in 2022. This assessment has contributed to the Company's timing with respect to EnergizeNJ, which proposes, among other things, reliability performance metrics gap-closure measures to take effect and enhance performance over the five-year period from 2024 through 2029. EnergizeNJ is intended to produce measurable improvement to the customer experience of reliability and system resiliency, as well as to accelerate the modernization of the JCP&L distribution system through advanced technologies, improved operational flexibility, and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

A.

increased available distribution system capacity. In addition, these upgrades will further
prepare the grid for the increases the Company is seeing and anticipates with respect to
electrification, including electric vehicle acceptance and service/charging equipment
deployment, increased penetration of distributed resources, and the drive towards building
and general move towards electrification efforts as outlined in the New Jersey Energy
Master Plan.

- Q. How does this Amended Program filing relate to JCP&L's 2023 Base Rate Filing made on March 16, 2023 ("2023 Base Rate Filing")?
- 9 A. When originally filed, the two proceedings were largely unrelated except for the mention of JCP&L's then-anticipated plan to file an IIP as referenced in the Direct Testimony of Dennis Pavagadhi (Exhibit JC-5 in the base rate case filing) to which I have referred herein. However, as addressed within this amended testimony, the Company is filing an Amended EnergizeNJ Petition in accordance with the Stipulation.
- Q. How does this Amended EnergizeNJ filing relate to JCP&L's Reliability Plus
 Program implemented in 2019 2020?
- 16 A. The projects of the 2019 – 2020 JCP&L Reliability Plus program were aimed at enhancing 17 safety, making JCP&L's distribution system more resistant to outages (i.e., more reliable) 18 during storms and blue-sky events, and at enabling the system to recover more quickly 19 when outages do occur. As described in detail in the Amended Engineering Report, the 20 projects and component projects of EnergizeNJ are intended to build on the work 21 completed under the 2019-2020 Reliability Plus Program by driving incremental reliability 22 improvements through an accelerated, programmatic modernization of the distribution 23 system.

1

2

3

4

5

1	Q.	Please describe the type of programs described in the Board's II&R Rules as suitable
2		for inclusion in an IIP filing.

- A. The II&R Rules establish a regulatory mechanism for an IIP designed to "allow a utility to accelerate its investment in the construction, installation and rehabilitation of certain non-revenue producing utility plant and facilities that enhance safety, reliability, and/or resiliency." N.J.A.C. 14:3-2A.1(a). The Rules further state the purpose of an IIP is "to provide a rate recovery mechanism that encourages and supports necessary accelerated construction, installation and rehabilitation of certain utility plants and equipment....[S]uch investment would occur in a systematic and sustained way to advance construction, installation, and rehabilitation of utility infrastructure needed for continued system safety, reliability, and resiliency, and sustained economic growth in the State of New Jersey."

 N.J.A.C. 14:3-2A.1(b).
- 13 Q. Did the Board impose any requirements for a utility filing seeking to establish an IIP?
- 14 A. Yes, the Board established several requirements in its II&R Rules applicable to a utility
 15 filing seeking approval to implement an IIP. As indicated above, I will address the
 16 requirements related to program eligibility, capital expenditures, selection criteria, cost
 17 benefits analyses and reporting for the proposed investments. As also indicated above, Ms.
 18 Pittavino will address cost recovery requirements.
- 19 Q. Are the proposed projects and component projects in EnergizeNJ eligible under the 20 II&R Rules requirements?
- 21 A. Yes. As stated in the IIP regulations, specifically in N.J.A.C. 14:3-2A.2(a):
- 22 (a) Eligible projects within an [IIP] shall be: 1. Related to safety, reliability, 23 and/or resiliency; 2. Non-revenue producing; 3. Specifically identified by

3

4

5

6

7

8

9

10

11

the utility within its petition	on in support of an [IIP]; and 4. Approved by the
Board for inclusion in an [IIP], in response to the utility's petition.

The Amended Program proposal, its main projects, and their component projects all meet these criteria. As indicated above and in the Amended Verified Petition, JCP&L is requesting Board approval to implement its proposed Program consistent with the Board's II&R Rules, IIP policy and in the best interests of JCP&L's customers.

Q. Can you be more specific?

1 2

A.

Yes. As will be seen in the descriptions provided herein and in the Amended Engineering Report, the three main projects and the fourteen component projects in this proposed Program have a direct correlation to the requirements of N.J.A.C. 14:3-2A with the clear focus being on reliability and resiliency. Each project and its component projects are focused on improving the customer experience and consider opportunities to improve safety across the JCP&L system. Specifically, while some projects do add system capacity, these capacity additions are not designed to serve single customers/developers or specific load related projects and, therefore, are non-revenue producing. Instead, these capacity projects improve operational flexibility and overall system resiliency. Additionally, EnergizeNJ has a strong emphasis on deployment of advanced technology such as supervisory control and data acquisition ("SCADA"), relays and reclosers, which are cited specifically as component projects proposed for inclusion.

Finally, I also address other II&R Rules requirements, such as those pertaining to Annual baseline spending levels, <u>N.J.A.C.</u> 14:3-2A.3(a) – (d), and minimum filing and reporting requirements, <u>N.J.A.C.</u> 14:3-2A.5(a) – (e), in- Section III (Baseline Capital Spending) and Section IV (Reporting) of this testimony, respectively. As proposed, EnergizeNJ is a five-year program, which complies with the program length and limitations

- requirements of $\underline{N.J.A.C.}$ 14:3-2A.4(a) (f). As mentioned earlier, expenditure recovery,
- 2 N.J.A.C. 14:3-2A.6(a) (i), is addressed in Ms. Pittavino's testimony (Exhibit JC-3
- 3 (Amended).

III. AMENDED PROGRAM PROPOSAL, COSTS AND BENEFITS

- 5 Q. Please describe in greater detail the three main projects.
- 6 A. The three main projects include:

Grid Modernization – This project addresses core capability and functionality of the JCP&L distribution circuits (referring to support structures, circuit capacity and switching/sectionalizing). Grid Modernization as such term is used in the Program is intended to deliver short- and long-term benefits. In the short-term, the components of the Grid Modernization project will address reliability performance, with a focus on outage avoidance and, therefore, will improve JCP&L's SAIFI performance. In the long-term, the Grid Modernization project components will proactively offset potential future capacity constraints and communication gaps (with field devices). Over the five years of the Program, JCP&L plans to invest approximately \$271 million (about \$94 million less than in the original EnergizeNJ proposal) into Grid Modernization through five component projects as described in the Amended Engineering Report at pages 20-33.

<u>System Resiliency</u> – This project addresses the reduction of the duration of customer interruptions, therefore focused on SAIDI, through increased and enhanced operational flexibility for JCP&L with increased SCADA penetration on the distribution system, increased capacity for circuit ties and redundancy, as well as further building out of elements of the Distribution Circuit of the Future vision. This project facilitates distribution automation capabilities and reduces incompatible voltages across the JCP&L

distribution system on an accelerated basis to enhance key portions of the distribution system, which is intended to provide benefits to customers in both normal and adverse weather conditions. This project further advances JCP&L's distribution automation program to add monitoring and intelligent control over the distribution system and allow for more rapid fault location, isolation, and service restoration, by creating a more resilient distribution system and reduced length of customer outages. The technologies to be deployed will provide the Company with increased flexibility and the potential for more integrated operations, as well as increased grid visibility in support of increasing saturation of distributed energy resources ("DER"). Over the five years of EnergizeNJ, JCP&L plans to invest approximately \$559 million (or approximately \$90 million more than under the original EnergizeNJ proposal) into System Resiliency through four component projects as described in the Amended Engineering Report at pages 33-44.

<u>Substation Modernization</u> – This project provides accelerated modernization to many of the Company's electric distribution substations and substation equipment, taking advantage of other projects occurring within the ambit of EnergizeNJ, and consistent with the principles of the Distribution Circuit of the Future vision with a focus on: (a) advancing the technology and equipment within JCP&L's distribution substations that will provide greater visibility and control for the distribution system operator ("DSO"); and (b) upgraded equipment to better withstand the coastal weather patterns impacting JCP&L's footprint. Over the five years of EnergizeNJ, JCP&L plans to invest approximately \$100 million into Substation Modernization through five component projects as described in the Amended Engineering Report at pages 44-53.

- 1 Q. The phrase "Circuit of the Future" has been used several times so far in this
 2 testimony, and it also appears as a name of one of the EnergizeNJ component projects.
- 3 Can you explain what the Company means by the term and how it has been used
- 4 generally and specifically in this testimony and in the Program?
- 5 Yes. The Distribution Circuit of the Future is a concept developed by FirstEnergy intended A. 6 to provide a vision of future operations that includes the integration of physical distribution 7 assets, communications systems, cyber security systems and data analytics enabled by 8 technologies to enhance capacity, extend opportunities for electrification and DER 9 integration, as well as providing increased resiliency and hardening. The Circuit of the 10 Future is a component of the Grid Modernization project in EnergizeNJ because the work 11 within this component aims to build the JCP&L system toward that vision. As described 12 in the Grid Modernization section of this amended testimony, the primary focus of the 13 Circuit of the Future component is accelerated infrastructure upgrades focused on JCP&L's 14 worst performing circuits. See Appendix A (Amended) for more details on both the 15 Distribution Circuit of the Future vision and the Circuit of the Future component project.
- Q. Earlier in your testimony you mentioned that a part of the EnergizeNJ proposal involves a reliability metric gap-closure plan. Can you please explain that aspect of the proposed Program and how it is addressed through the projects and component projects?
- 20 A. Yes. The Company's proactive strategy outlined within this Amended Program proposal
 21 is required to close the reliability metric gap expected due to the BPU's regulation changes
 22 as previously outlined in this amended testimony and described in more detail in the
 23 Amended Engineering Report. In addition, the varying impact of storm events in New

Jersey on the Company's recent reliability performance and in anticipation of near-term impacts from changes in reliability measurement, as well as increased electrification of the transportation sector, and increasingly sophisticated demands from customers for reliable service reinforces the Company's view that an immediate large-scale accelerated investment program is needed. This Program aims to enhance the ability of the JCP&L distribution system to meet such challenges and demands through design and construction projects that not only address current near-term challenges, but which also catapult the Company forward in actualizing its long-term, Distribution Circuit of the Future vision.

Grid Modernization

Q. Please describe the Grid Modernization Project.

- The Grid Modernization project focuses on advancing the equipment and technology installed across JCP&L's distribution system. This category will begin to upgrade JCP&L's distribution circuits to align with JCP&L's vision of the "Distribution Circuit of the Future." With greater electrification, JCP&L anticipates that customer expectations will continue to increase with respect to reliability, power quality and seamless integration of DER. To meet customer expectations, the Grid Modernization component of EnergizeNJ provides for greater operational flexibility and increased visibility, and it sets the stage for additional technology integration, storm hardening and greater capacity in key areas of the system.
- Q. What component projects are included in the Grid Modernization main project category?
- A. There are five component projects included in the Grid Modernization overarching program category:

- Lateral Fuse Replacement with TripSaver II: This component project includes the replacement of existing fused cutouts with TripSavers on lines with historically poor performance, which will reduce the impact of transient faults on the system. Circuit Protection & Sectionalization: This component project includes the installation of 3-phase devices to break up feeders to smaller groups of customers which will help isolate and reduce the impact of faults on the mainlines. These devices will be integrated with SCADA and full communication into the network management system for potential future full DA enablement. Circuit of the Future: This component project targets accelerated infrastructure upgrades, including: 1) improved storm hardening using larger pole sizes where pole replacements are required; 2) improved resiliency from increased conductor capacity to increase tie capability and greater hosting capacity for DER; and 3) improved reliability from increasing capability for automated sectionalizing using SCADA control to reduce the size of outages (i.e., sectionalizing groups of 300-500 customers). This project focuses on JCP&L's historically worst performing circuits.
 - <u>Underground Cable Replacements:</u> This component project replaces underground cable with new, jacketed cable and, where necessary, associated switches and pad-mount transformers in historically poorer performing areas to improve reliability by reducing the frequency of underground cable faults. In addition, this project will also enhance safety by reducing the potential for stray voltage conditions for customers.
 - Selective Undergrounding: This component project includes the relocation of overhead facilities underground where overhead conductors historically have been damaged during major weather events and are highly susceptible to damage. The locations identified for this project have the potential to impact more than one circuit and, therefore, provide for greater customer benefits in reducing potential outages. These projects also function to satisfy one of the recommendations included in JCP&L's 2021-2022 Management Audit Report.

As I discussed above, pursuant to the Stipulation, the Company has removed work locations associated with 18 circuits from the Circuit of the Future and Lateral Fuse Replacement with the TripSaver II component projects within the Grid Modernization category project. This work being removed from the IIP will occur as part of the HPC Phase I plan, as referenced in paragraph 29 of the Stipulation. This removal from the

1	original EnergizeNJ proposal resulted in a reduction of \$94M in spending in the proposed
2	IIP Program consistent with paragraphs 32 and 34 of the Stipulation.

System Resiliency

4 Q. Please provide details regarding the System Resiliency main project category.

The System Resiliency project will apply a distribution system contingency planning approach to further take advantage of opportunities to restore customers more quickly on the distribution system in the event of an outage. This category offers operational flexibility by adding capacity at existing or proposed new substations to support increased circuit ties, replacing portions of the 4 kilovolt ("kV") distribution system, which has limited tie capability in the event of an outage, with JCP&L's most common distribution voltage, 12.47kV. This category complements the Grid Modernization category with the installation of additional 'smart' devices, such as SCADA operated and automatically operating distribution line reclosers and will prepare key areas of JCP&L's distribution system for full DA enablement.

Q. What component projects are included in the System Resiliency main project?

- 16 A. There are four component projects included in the System Resiliency overarching project:
 - <u>Distribution Voltage Standardization:</u> This component project creates new tie opportunities between feeders by creating more uniform distribution voltage throughout the service territory. All distribution line upgrades within this work scope will adhere to the Distribution Circuit of the Future components.
 - <u>Circuit Ties with SCADA (Loop Schemes):</u> This component project installs SCADA reclosers to automatically switch customer loads during outage events. Conductors would also be replaced to provide increased capacity to handle larger loads.
 - New Distribution Sources: This component project installs additional substation transformers in existing or new distribution substations in order to add capacity to the JCP&L system, increase the opportunity for circuit ties and reduce circuit length

1	and the number of customers served from any single existing circuit, thereby
2	limiting customer exposure during an outage event.

• <u>Distribution Automation Enablement:</u> This component project installs the appropriate substation relays to enable SCADA visibility and control, and to fully utilize the capabilities of the advanced applications of JCP&L's Advanced Distribution Management System.

As I mentioned above, as a result of the Stipulation, the Company proposes further improvements to the nine (9) Target Circuits that will not be removed from the HPC list following the completion of the HPC Phase I plan, but will now be captured within the EnergizeNJ Program, including reconfiguring certain circuits and/or adding new distribution sources. These are included in the Automated Circuit Ties with SCADA (Loop Schemes) and New Distribution Sources component projects, within the System Resiliency category project. These HPC Phase II improvements have resulted in the addition of approximately \$90M in these two System Resiliency project components of the Amended EnergizeNJ proposal.

Substation Modernization

- 17 Q. Please provide details regarding the Substation Modernization main project.
- A. The Substation Modernization project will accelerate the replacement of substation equipment to further enable advancing technologies on the distribution system. This category also increases SCADA visibility and control at the substation level, which offers a secondary benefit of supporting further DER integration. Further, the equipment that will be added will be able to support Volt/VAR control in the future.
- Q. What component projects are included in the Substation Modernization main project?
- 25 A. There are five component projects included in the Substation Modernization main project:

2 3		• Replace Coastal Substation Switchgear: This component project accelerates the replacement of switchgear in substations with the benefit of avoiding emergency replacement in the future.
4 5 6		• Oil Circuit Breaker ("OCB") Replacements: This component project accelerates the replacement of distribution OCBs, which, upon failure, can lead to environmental concerns in addition to the customer impact.
7 8 9 10 11 12		• <u>Modernize Protective Equipment:</u> This component project replaces underfrequency load shed and distribution protection unit relays with modernized protective equipment at an accelerated rate. This will improve reliability by avoiding long duration outages as well as refining the ability to analyze faults and system conditions. Advancements in this technology are more compatible with the protective equipment required for advance distribution automation.
13 14 15 16 17 18		• Remote Terminal Unit ("RTU") Replacements: In this component project, enhanced data will become available through the upgraded RTU with which the DSO will be able to implement restoration more rapidly for substation outages. The acceleration of RTU upgrades also ensures that JCP&L distribution substation communications are compatible with requirements for advanced distribution automation.
19 20 21 22 23 24 25		• <u>Mobile Substations:</u> The purchase of additional mobile substations will be critical in the execution of this program and, therefore, is included as a component project. The mobile substation purchases will ensure JPC&L can facilitate outages to safely upgrade the system as outlined within this testimony while continuing to provide service to the customers in the areas where the Company is working. Additionally, in the event of major substation equipment failures, mobile substations enable the emergency restoration of customers, typically within 24 hours.
26		No changes have been made in the Substation Modernization category project or any
27		of its component projects or projected spending as a result of the Stipulation.
28	Q.	Please summarize the safety, reliability and resiliency benefits associated with
29		EnergizeNJ.
30	A.	As discussed above, the three main projects and fourteen component projects in Amended
31		EnergizeNJ are predominantly focused on short-term- and long-term- reliability and
32		resiliency improvements for JCP&L customers. However, there are also safety benefits to
33		the implementation of this Program as well, both for the public and our employees. With

the modernization of certain substation equipment, the risk of equipment operating at or beyond the equipment's mean lifetime is greatly reduced which also provides a safety advantage for crews working in the substations. All projects which drive outage avoidance also aim to reduce exposure of employees and the public to unknown system conditions by giving more visibility to fault-location and surrounding system conditions. Component projects such as Circuit of the Future offer the benefit of storm hardening, which also improves public safety during weather events, first by reducing storm impacts, and second by the expected reduction in hazardous conditions during a typical storm event. The detailed reliability benefits of each project and component are also outlined in the Amended Engineering Report and discussed further below.

Q. How have reliability benefits been quantified for this Program?

To quantify the benefits of the Program (as amended) to customers, the Company used the Interruption Cost Estimate ("ICE") tool, sponsored by the U.S. Department of Energy ("DOE"). The ICE tool is used to estimate the dollar benefits associated with avoided outages and reductions in restoration time. The results of the ICE tool analysis for EnergizeNJ are shown in Section VII of the Amended Engineering Report. The results of that analysis reflect anticipated dollar benefits from improvements in general customer reliability and in the Company's ability to restore power following a major storm event. In using this tool, the Company analyzed historical outage information for circuits addressed in EnergizeNJ projects for the period of 2018 – 2022, to determine the reasonable bases for the measurement of reliability improvement in the areas of both SAIFI and SAIDI. The Company then estimated post-EnergizeNJ plan SAIFI and SAIDI for those same circuits addressed within the Program. These bases and post-plan estimates are then used as inputs

to the ICE tool, which quantifies a dollar benefit to customers from the proposed
distribution system enhancements. The net present value of the customer benefit driven by
SAIFI and SAIDI post-plan improvements sum to a total of \$937 million (or \$91 million
more as compared to the original EnergizeNJ filing), and an overall cost-to-benefit ratio of
1.2. (as compared to 1.1 in the original EnergizeNJ filing).

- Q. Are there any secondary benefits of this Program as amended, outside of the identified safety, reliability and resiliency benefits mentioned above?
 - The focus of EnergizeNJ continues to be to improve the JCP&L distribution reliability performance, however, the manner in which the Program is planned to accomplish this does have additional qualitative benefits. Where capacity is added throughout this Program, it is expected to enable additional DER integration across the JCP&L system. Each of the three main projects of EnergizeNJ, even as two have been amended, continue to accelerate the installation of advancing technologies to support the Circuit of the Future vision; these technologies support advanced visibility, monitoring and modeling on the distribution system to enable more accurate planning for the future of the system as electrification is expected to increase in support of the state's energy goals. For example, distribution conductor upgrades will be installed, often along with SCADA line reclosers, which include metering and control, in both Grid Modernization and System Resiliency projects. Additionally, within the Substation Modernization project, RTU Replacements will ensure not only real-time communication, but also improve system loading analysis and modeling. Together, the component projects with this work scope not only add capacity enabling additional DER integration, but also provide more accurate system planning model inputs for future load and capacity planning models.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

IV. ANNUAL BASELINE CAPITAL SPENDING LEVELS

- 2 Q. Does the Company propose annual baseline capital spending levels over the life of
- 3 **EnergizeNJ?**

- 4 A. Yes. In accordance with N.J.A.C. 14:3-2A.3(a) & (b) and 14:3-2A.5(b)(6), the Company
- 5 proposes substantial annual baseline capital spending levels of the Program period as set
- forth in Schedule DIG-1 (Amended). The proposed annual baseline capital spending level
- was established using a five-year historical average of base capital expenditures. The more
- 8 specific components of the Company's proposed baseline spending levels are found in
- 9 Schedule DIG-2.
- 10 Q. Does the Company propose to maintain, within its baseline capital expenditures,
- capital expenditures on projects similar to those in the Program that amount to at
- least ten percent of the approved IIP (see N.J.A.C. 14:3-2A.2(c))?
- 13 A. Yes. In accordance with the II&R Rules, ten percent of the amounts proposed for the
- Program are for the Company to maintain, within its baseline capital expenditures, capital
- expenditures on projects similar to those in EnergizeNJ. JCP&L has historically
- undertaken capital investments in project types similar to those selected for the Program
- 17 (although in this case driven by the Circuit of the Future vision) and the Company has
- included in its forecasted base capital, an amount equal to 10% of the total proposed
- 19 Program capital expenditures, as reflected in Schedule DIG-3 (Amended), or \$82.4 million
- 20 (as per Schedule DIG-1(Amended) for investments in projects similar to EnergizeNJ, and
- consistent with the Circuit of the Future vision, which is intended to serve as a roadmap or
- guide for future capital spending. That said, the II&R regulations and the Program
- 23 generally have provided an opportunity for JCP&L to accelerate certain future planned

1	work and move forward reliability, resiliency, and safety benefits to customers. Schedule
2	DIG-1 (Amended) sets forth the projected annual breakdown. Such baseline capital
3	amounts will be expended in the normal course of business and recovered in a future base
4	rate proceeding. Costs associated with projects undertaken as baseline capital expenditures
5	will not be subject to the accelerated recovery mechanism for Program expenditures
6	proposed by the Company.

- Q. Have you provided the Company's projected annual capital expenditure budget for a prospective five-year period, identified by major categories of expenditures (see N.J.A.C. 14:3-2A.5(b)1)?
- 10 A. Yes. Please refer to Schedule DIG-1 (Amended), specifically the program years of June 2024 to June 2029.
- 12 Q. Have you provided the Company's actual capital expenditures over the past five 13 years, identified by major categories of expenditures (see N.J.A.C. 14:3-2A.5(b)2)?
- 14 A. Yes. Please refer to Schedule DIG-2, specifically years 2018 to 2022.
- 15 Q. Has the Company included in its Program filing an engineering evaluation and report
 16 identifying the specific projects included, the in-service dates, and benefits of
 17 EnergizeNJ (see N.J.A.C. 14:3-2A.5(b)3)?
- 18 A. Yes. As discussed earlier, the Amended Engineering Report describes in detail the specific 19 projects included in EnergizeNJ, project cost estimates, project timing, project objectives, 20 and the results of a cost benefit analysis. *See* Appendix A.

1 ().	Have you	provided :	annual budg	ets for F	EnergizeN.J (see N.J.A.C.	14:3-2A.50	(b)4)?
	∕•	IIII O JOU	promaca	ummum vuug	CUS IOI L	THE SIZE IN (DCC 1 110 11 11 C1	1 110 -110		, .

- 2 A. Yes. Table 1 as updated in my amended testimony on page 7 provides the budgeted annual
- 3 expenditures for the Program as amended. In addition, please refer to Schedule DIG-3
- 4 (Amended) for the projected JCP&L Program Capital Expenditures for 2024 through 2029.
- 5 Q. What is the maximum amount, in aggregate, that JCP&L seeks to recover through
- 6 EnergizeNJ, as amended (see <u>N.J.A.C.</u> 14:3-2A.5(b)7)?
- 7 A. As noted above and set forth on Schedule DIG-1(Amended), the maximum amount the
- 8 Company seeks to recover through EnergizeNJ is \$823.5 million for the Program's capital
- 9 investments (as compared to \$823.9 million as originally filed).
- 10 Q. Has the Company addressed the minimum filing requirements set forth in N.J.A.C.
- 11 **14:3-2A.5(b)5, 6, and 8?**
- 12 A. Yes. The minimum filing requirement of N.J.A.C. 14:3-2A.5(b)6 to set forth proposed
- baseline spending levels, consistent with N.J.A.C. 14:3-2A.3(a) and (b), is addressed in my
- amended testimony above in Table 1 and in Schedule DIG-1(Amended). The minimum
- filing requirements of N.J.A.C. 14:3-2A.5(b)5 (proposing when the Company intends to
- submit its next base rate case) and N.J.A.C. 14:3-2A.5(b)8 (providing the estimated rate
- impact of an IIP on customers) are addressed in the direct testimony of Carol Pittavino
- 18 (Exhibit JC-3 (Amended)).
- 19 Q. Please provide a general overview of how the Company's estimates of capital costs for
- 20 **EnergizeNJ** were developed.
- 21 A. The engineering estimates, as originally submitted and as amended, of the Program's
- capital costs have been developed by the Company utilizing its customary estimation

techniques. For distribution line projects, like those included in EnergizeNJ, the Company uses estimates based on its Customer Request Work Scheduling System ("CREWS"). CREWS is a software system that generates cost estimates based on the project designs created in the system. The design work for EnergizeNJ projects is discussed below. For the proposed Program projects, the CREWS estimates include direct labor (labor hours and internal labor costs), direct material costs, and direct equipment costs. Ancillary direct project costs necessary for a Program component project have been added, including, for example, traffic control, tree work, and permitting. EnergizeNJ projects require a blend of the Company's resources as well as contractor resources. In producing the final distribution project estimates, the CREWS estimates were therefore adjusted to blend internal and contractor labor costs based on the projected workforce for the particular project component. The Company's Supply Chain department provided current contractor labor rates. For substation projects, the Company utilized actual project costs incurred for similar projects. These actual costs were adjusted to accommodate the latest contractor and labor rates, as well as revised material costs.

Q. Are the Company's capital cost estimates considered to be final construction costs?

A. No. These estimates are used for budgeting purposes and are reasonable and reliable for purposes of the Program's development and approval based on JCP&L's costing experience. However, final detailed design estimate and construction costs for projects may deviate from these estimates.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

- 1 Q. Does EnergizeNJ, as originally proposed and now amended, accommodate year-to-2 year variations from the annual Program budget?
- 3 A. Yes. EnergizeNJ allows variations in its annual capital expenditures of up to ten percent 4 from its overall total annual Program budget (such that variances from budgets are allowed 5 for individual categories, projects, and project components), provided that the overall total approved Program budget is not exceeded. It is my understanding that this proposal is 6 7 consistent with N.J.A.C. 14:3-2A.4(f). JCP&L will seek approval for any year-to-year 8 variances in its overall total annual EnergizeNJ budget that are anticipated to exceed ten 9 percent. Subject to these limitations, JCP&L proposes to maintain the ability to substitute 10 projects and project components within and among the fourteen Program component 11 projects.
- Q. Are there circumstances where the Company would need to seek an adjustment to its overall annual budget beyond ten percent?
 - Based on its planning, JCP&L does not believe this will be the case; however, circumstances may arise that may necessitate such changes. For example, the COVID-19 pandemic required the Company to implement safety measures such as work pods that increased labor costs. Supply chain issues with many products used in our industry such as wood poles, overhead distribution transformers, and substation transformers have caused constraints leading to longer wait times and materials price increases. Many of these materials continue to experience those same supply chain constraints. In the development of this Program, JCP&L has worked to identify those projects that may be impacted by supply chain constraints and appropriately designated a delayed in-service date, as reflected in Schedule DIG-3(Amended). Additionally, JCP&L and FirstEnergy

14

15

16

17

18

19

20

21

22

23

Supply Chain have communicated with vendors around the size and scope of this proposed Program to reduce such impacts as practicable. Nonetheless, there may be circumstances beyond the Company's control that would require JCP&L to seek adjustment to its annual budgets, and the Company would bring those to the Board's attention if and as they become known.

Q. Could these supply chain constraints impact the overall cost to complete EnergizeNJ program projects?

Yes. Despite its best efforts planning these projects, there are factors beyond the Company's control that could impact operational (*i.e.*, delays) and financial (*i.e.*, costs) performance with respect to the Program. However, if any cost increases that result in the overall actual cost to complete the Program exceeding the overall costs approved by the BPU for the Program, the amount by which the overall actual EnergizeNJ costs exceed the overall costs approved by the BPU for the Program shall be carried forward to a subsequent base rate proceeding for recovery, subject to prudence review. Indeed, the Stipulation at Paragraph 33 recognizes the possibility of delay issues beyond the control of the Company and seeks support in advance from Staff and Rate Counsel to support the Company's siting applications related to the HPC Phase II work to the extent reasonably practicable, subject to review of each siting application. The Signatory Parties to the Stipulation also acknowledge that JCP&L is experiencing long lead time for certain substation equipment, which may or may not impact the completion of the HPC Phase II work.

1	Q.	Will the Company implement EnergizeNJ if the Board does not approve accelerated
2		cost recovery for it in this proceeding?

Generally, no. The Company recognizes the need to improve reliability performance; however, this Program, as amended, involves significant acceleration of future planned investments over what the Company's ordinary capital portfolio will support. Without accelerated rate treatment, such as that offered under the II&R Rules, the Company would continue to make these investments in the normal course and not on an accelerated basis.

However, there is an exception to the above caveat; that is, the HPC Phase II plan improvements, which have been added to this amended EnergizeNJ Program as part of the System Resiliency category project of the amended filing as a result of the Stipulation. Such work is work that the Company must execute as proposed. The Stipulation allows for the Company to request the Board's approval of accelerated cost recovery of such investments for this work within the EnergizeNJ amended filing. Absent such approval, cost recovery would need to be sought through base rates in the Company's next and/or subsequent base rate filing(s).

Q. What is the basis for EnergizeNJ's five-year duration?

The five-year duration is consistent with the II&R Rules' recognition that IIP investments should occur in a systematic and sustained way (N.J.A.C. 14:3-2A.1(b)). The five-year duration will efficiently and cost-effectively accommodate engineering, permitting, contracting and project scheduling, contractors' planning with regards to labor and equipment procurement and mobilization, and coordination with municipalities and other utilities. Component projects such as New Distribution Sources, Voltage Standardization and Coastal Switchgear Replacement will typically require longer lead times for larger

A.

equipment planning and purchases such as substation transformers and distribution switchgear. In some specific locations, New Distribution Sources may also require, and will be dependent upon, real estate expansion in the areas of need. The longer five-year duration should function to produce more favorable pricing from contractors by allowing FirstEnergy's Supply Chain and Project Management organizations ample time to plan project execution, engage the appropriate number of contractors to work across the system and offer competitive bidding opportunities for a diverse slate of qualified contractors. In addition, a five-year duration should contribute to lower average costs as fixed aspects of planning and mobilization are spread over certain larger projects. It is noted that the EnergizeNJ Petition, as amended, does not propose any change in the proposed schedule of the Program.

- Q. Please describe the Company's capability to successfully complete the projects in EnergizeNJ.
 - The five-year Program, as amended, is within the Company's ability to perform and complete using internal and external contract resources and available and procured material resources. JCP&L has managed numerous large capital projects, including the successful execution of the 2019 2020 Reliability Plus program, and has successfully met its objectives while maintaining the resources and cost of the projects.

JCP&L has access to internal engineering and construction resources that will be utilized in the design and construction of the projects. In addition to the internal resources, JCP&L anticipates using contractors and union labor for the majority of the work under the Program with direct Company oversight of the work to ensure it meets JCP&L

1		specifications and standards. The Company's Supply Chain department will continue to
2		monitor current contractor availability in order for Program project schedules to be met.
3		In sum, although EnergizeNJ will require considerable human and material resources,
4		the Company has the requisite managerial experience to oversee the Program
5		implementation and access to all the resources necessary to complete EnergizeNJ in a
6		timely and efficient manner.
7		V. <u>REPORTING</u>
8	Q.	What is the Company's proposal for reporting on the progress of EnergizeNJ?
9	A.	Consistent with the reporting requirements of N.J.A.C. 14:3-2A5(e), the Company
10		proposes to provide semi-annual status reports to Board Staff and the New Jersey Division
11		of Rate Counsel containing the following:
12		1. Forecasted and actual costs of the Program for the applicable reporting period,
13		and for the Program to date, where Program projects are identified by major
14		category;
15		2. The estimated total quantity of work completed under the Program identified
16		by major category. In the event that the work cannot be quantified, major tasks
17		completed shall be provided;
18		3. Estimated completion dates for the Program as a whole, and estimated
19		completion dates for each major Program category;
20		4. Anticipated changes to Program projects, if any;
21		5. Actual capital expenditures made by JCP&L in the normal course of business

on similar projects, identified by major category;

1		6. With the proposed inclusion of the HPC Phase II plan within this amended
2		EnergizeNJ filing, and as required by Attachment 5 to the Stipulation of
3		Settlement; and
4		7. Any other performance metrics concerning the IIP required by the Board.
5		The proposed semi-annual reporting beneficially provides the Board with current
6		information and allows the Board to monitor the progress of EnergizeNJ as investments
7		are placed into service throughout its term. I should note in closing that, other than as noted
8		above, the changes to EnergizeNJ from what was originally filed do not otherwise impact
9		the proposed reporting obligations of the Company noted above, the changes to EnergizeNJ
10		from what was originally filed do not otherwise impact the proposed reporting obligations
11		of the Company hereunder.
12		VI. CONCLUSION
13	Q.	Does this conclude your amended direct testimony at this time?
14	A.	Yes.

Jersey Central Power & Light Company

EnergizeNJ Infrastructure Investment Program

Amended Engineering Evaluation and Report

November 9, 2023, Amended as of February 27, 2024

Table of Contents

<i>I</i> .	Preface	1
II.	Executive Summary	1
III.	Introduction	2
IV.	JCP&L Service Territory	3
R	enewable Energy Penetration in the JCP&L Service Territory	5
V.	Board Requirements for Infrastructure Investment Plans	5
VI.	JCP&L Electric Distribution Reliability	6
In	ntroduction	6
R	eliability Overview	6
R	ecent Regulatory Changes Create an Immediate Performance Gap for JCP&L	10
	nalysis and Quantification of the Performance Gap	
	eliability and Distribution Circuit of the Future Vision	
	EnergizeNJ Cost Benefit Analysis	
	ost Estimating	
В	enefit Analysis	17
VIII	I. The EnergizeNJ Program	20
P	roject 1: Grid Modernization	21
	GM Component: Lateral Fuse Replacement with TripSaver II	22
	GM Component: Distribution Circuit of the Future	
	GM Component: Circuit Protection and Sectionalization	
	GM Component: Underground Cable Replacement	30
	GM Component: Selective Undergrounding	32
P	roject 2: System Resiliency	
	SR Component: Distribution Voltage Standardization	35
	SR Component: New Distribution Sources	37
	SR Component: Automatic Circuit Ties with SCADA (Loop Schemes)	39
	SR Component: Distribution Automation Enablement ("DA Enablement")	41
\mathbf{P}_{1}	roject 3: Substation Modernization ("SM")	43
	SM Component: Replace Coastal Substation Switchgear	44
	SM Component: Oil Circuit Breaker (OCB) Replacements	47
	SM Component: Modernize Protective Equipment	48
	SM Component: Remote Terminal Unit (RTU) Replacements	
	SM Component: Mobile Substations	
IX.	Conclusion	52

JCP&L's EnergizeNJ Engineering Evaluation and Report (Amended)

I. Preface

In accordance with the Stipulation of Settlement approved by the Board of Public Utilities ("Board" or "BPU") on February 14, 2024 in Jersey Central Power & Light Company's ("JCP&L" or "Company") 2023 Base Rate Filing proceeding in BPU Docket No. ER23030144 (the "Stipulation"), the Signatory Parties agreed that the Company would amend the original EnergizeNJ Petition by February 29, 2024 to reflect certain revisions as set forth in paragraphs 32-34 of the Stipulation. While the substance of these changes is described and explained in the amended direct testimony of Dana I. Gibellino (Exhibit JC-2 (Amended)), the engineering and programmatic aspects of the changes are contained herein and are set forth in the sections and attachments to the Engineering Report, as amended, and set forth and shown in the Benefit-Cost Analysis Change Log (Attachment 5).

II. Executive Summary

The electric industry has undergone, and continues to undergo, paradigm shifts that emphasize innovation, technology, and increasing electrification in response to new, expanding, or higher needs and demands for electric service by all categories of customers. Regulation has also been evolving, and continues to evolve, to accommodate or stimulate changes that better facilitate the new paradigms to better respond to such customer needs. For instance, the state of New Jersey has some of the most aggressive energy goals across the nation built into its Energy Master Plan. With those goals, come challenges for the State's utility industry. JCP&L is not excluded from such challenges. The Company's electric infrastructure across its-predominantly suburban and rural service territory footprint was built primarily with radial infrastructure across the span of more than 100 years and, at its start, as parts of over 70 different electric utility companies. This set of legacy design components pose-headwinds for the Company as it addresses the evolving demands. The Company believes that its initial Infrastructure Investment Program ("IIP"), called Reliability Plus, was effective in its distinct areas of focus. The lessons learned from the Reliability Plus focus coupled with a realistic view of the original and prudent design of its electric system, the evolving reliability standards and the current and future demands of increasing electrification have led JCP&L to a more comprehensive vision for the structure and aim of its near- and long-term infrastructure investment strategy. That strategy is best and most simply expressed conceptually as a commitment to JCP&L's Distribution Circuit of the Future. As conceived by JCP&L, this second IIP proposal, referred to as EnergizeNJ, is intended to embody the structure and aim of that strategy with, as shall be explained further herein, both an immediate short-term focus on reliability performance improvement and a long-term commitment to systemic transformation through tactical distribution system modernization.

JCP&L's EnergizeNJ (also referred to as the "Program") builds over a five-year term to a total investment of \$931M to lay a foundation for, and to jump-start the Circuit of the Future commitment, where redundancy (circuit tie capacity), distributed energy resource ("DER") accommodation, and advanced analytics and modeling are all readily available. In addition, the shorter-term focus of EnergizeNJ addresses recent adverse reliability performance trending and an

JCP&L's EnergizeNJ Engineering Evaluation and Report

anticipated possible performance gap arising in connection with the Board of Public Utilities ("BPU" or "Board") recent adoption of revised reliability standards and related changes. This Program, as proposed, takes a measured and layered approach to improving the overall customer experience.

More specifically, within this plan, there are three main projects, including Grid Modernization, System Resiliency, and Substation Modernization. This Program, and the projects and component projects within it, have been conceived to lay a foundation for, and to jump-start the Circuit of the Future commitment, while closing the estimated reliability performance gap, based on historical system performance and a detailed review of opportunities for outage avoidance and reduced outage duration. The Grid Modernization project lays the infrastructure foundation for circuit capacity upgrades, including not only upgraded distribution overhead conductors, but the installation of reclosing technologies and more resilient hardware to offset historically sustained outages. The System Resiliency project is focused on opportunities to shorten the duration of outages, through added technology and secure device communication, in combination with further conductor and hardware upgrades to add tie capability and operational flexibility. Lastly, the Substation Modernization project is focused on a combination of both substation infrastructure and added technology to provide the distribution system operators and engineers improved telemetry and modeling capabilities for short-term decision making and long-term planning.

Importantly, foundation-setting, reliability and resiliency are not the only benefits of this proposed Program; advancing energy goals are also woven into the qualitative benefits of this program. Where capacity is being added, it is expected to make way for additional DER integration across the JCP&L system. Added technologies captured within this proposed plan will enable realization of the Circuit of the Future vision, which will be explored in detail within this Engineering Evaluation and Report ("Engineering Report" or "Report"), and which provides the outline of the roadmap toward fully integrated grid operations across JCP&L.

This Engineering Report will serve to explore each project named above in greater detail and will demonstrate that the Benefit to Cost Ratio of the work within this proposal is greater than 1.0, with an expected societal benefit of \$937 million, representing significant value to the customers and communities that JCP&L serves across the State of New Jersey.

III. Introduction

Pursuant to the requirements of the New Jersey Administrative Code ("N.J.A.C.") 14:3-2A.1 *et seq.*, JCP&L has prepared this Engineering Report in support of its proposed Program as Appendix A to the testimony of Dana I. Gibellino, which is Exhibit JC-2 to the Petition for approval filed by the Company with the BPU. JCP&L is actively engaged and diligently committed to providing safe, adequate and proper service to its customers, including by continuing to perform in a manner that results in satisfactory and cost-effective reliability performance for its customers. Historically, JCP&L has largely succeeded in maintaining electric distribution system reliability in accordance with the minimums and benchmark reliability indices such as System Average Interruption

JCP&L's EnergizeNJ Engineering Evaluation and Report

Frequency Index ("SAIFI"), and Customer Average Interruption Duration Index ("CAIDI"), against which its performance has been measured by the BPU.

The Board's Infrastructure Investment and Recovery Rules ("II&R Rules") provide an opportunity for increased Company spending to accelerate projects beyond what historically has been required for system reliability, resiliency, and safety. In the Company's view, it is now appropriate to pursue a second IIP² in order to set the foundation for the Company's Distribution Circuit of the Future vision, through a portfolio of accelerated capital projects that are intended to upgrade the electric distribution system with an eye to the future by incorporating new equipment, reflecting currently available technology, while at the same time enhancing in the near term, overall system reliability, resiliency and safety that will also respond to the Board's updated definition of Major Events, reliability standards changes, and evolving customer expectations. Ultimately, JCP&L plans to utilize this second IIP to drive incremental reliability improvements through an accelerated programmatic modernization of the distribution system, which will jump-start its strategic commitment through tactical foundation projects.

IV. JCP&L Service Territory

As described in more detail below, JCP&L provides electric service to more than 1 million residential, commercial, and industrial customers in two geographically separate regions. The Central New Jersey Region ("CNJ" or "Central Region") is based in Holmdel, New Jersey and the Northern New Jersey Region ("NNJ" or "Northern Region") is based in Morristown, New Jersey (collectively "Regions"). *See* Figure 1 below.

The 3,312 square miles of the Company's service territory is comprised of 13 counties and 23 municipalities. The Central Region is located in central coastal New Jersey, and the Northern Region is located in the heavily forested northwestern portion of the State. In turn, these two regions are comprised of a total of fourteen operating districts. JCP&L employs approximately 1,360 personnel across its operating districts. JCP&L provides electric distribution service to approximately 25% of the metered electric customers in New Jersey. The JCP&L service territory

_

¹ CAIDI depicts average outage duration per customer. SAIFI calculates the frequency of outages on a customer basis. Another measure, System Average Interruption Duration Index ("SAIDI"), which is measured in time – usually minutes or hours. Although SAIDI is not part of the set of regulatory reliability measures, it also provides a view of outage duration on the system. SAIDI is calculated by dividing the sum of all customer outage durations by the number of customers served. Thought of another way, it is the product of multiplying CAIDI by SAIFI. In this Report, the measure is in minutes.

² On July 13, 2018, the Company filed its petition in BPU Docket No. E018070728 seeking approval to implement its proposed Reliability Plus Infrastructure Investment Program ("Reliability Plus"), including its cost recovery mechanism, pursuant to II&R Rules. The BPU issued an order dated May 8, 2019, approving a stipulation of settlement with respect to the parameters of the initial Reliability Plus program, which the Company implemented and completed during 2020. The May 8, 2019 Order can be accessed at https://www.nj.gov/bpu/pdf/boardorders/2019/20190508/5-8-19-2B.pdf.

JCP&L's EnergizeNJ Engineering Evaluation and Report

includes approximately 45% of the municipalities in the State of New Jersey. Indeed, the JCP&L service territory is vast and diverse in terms of customer demographics and terrain.

The Company owns, operates, and maintains over 35,000 conductor miles of primary distribution circuits, over 1,800 circuit miles (5,469 conductor miles) of sub-transmission circuits, in excess of 340,000 JCP&L-owned poles and approximately 250,000 transformers. JCP&L owns, operates, and maintains 339 substations, 244 sub-transmission circuits, and 1,162 primary distribution circuits.

The JCP&L distribution system is mainly a 12.47 kilovolt ("kV") multi-grounded wye system. Circuits operating at this voltage make up approximately 55% of the circuits throughout JCP&L's distribution system serving approximately 73% of its customers. Other primary voltages include 4.16kV wye, 4.8kV delta (together, serving approximately 23% of JCP&L's customers) and 34.5kV wye, which serves approximately 4% of JCP&L's customers. A more detailed description of JCP&L's two operating areas – the Northern Region and the Central Region are provided in Attachment 1 hereto.

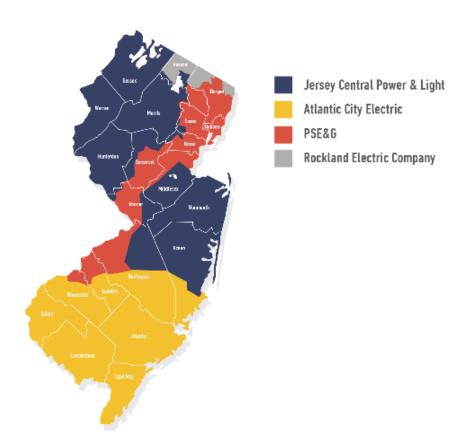


Figure 1: New Jersey EDC Map

JCP&L's EnergizeNJ Engineering Evaluation and Report

Renewable Energy Penetration in the JCP&L Service Territory³

Renewable distributed generation continues to have a significant presence in New Jersey, including the JCP&L service territory. As of December 31, 2022, there was a total of 47,483 retail net metered customers on the JCP&L system with a combined nameplate capacity of 795.8 megawatts ("MW") of renewable generation and an additional sixty-nine wholesale grid connected generators and battery storage locations with a combined nameplate capacity of 586.4 MW, connected 69 kV or less. Figure 2 below highlights the growth of class 1 renewables specifically.

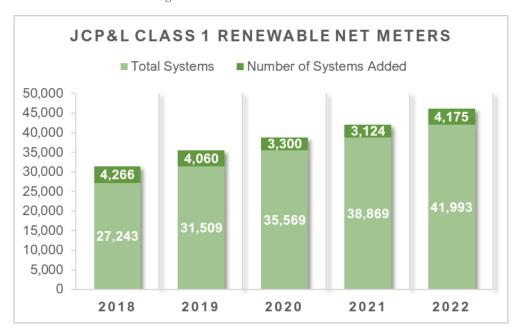


Figure 2: JCP&L DER Penetration Growth

V. Board Requirements for Infrastructure Investment Plans

This Engineering Report is provided to address the third requirement of the II&R Rules listed below at N.J.A.C. 14:3-2A.5(b)3, which provides the petition requirements for an IIP to include within its petition as follows:

- 1. Projected annual capital expenditure budgets for a five-year period, identified by major categories of expenditures;
- 2. Actual annual capital expenditures for the previous five years, identified by major categories of expenditures;
- 3. An engineering evaluation and report identifying the specific projects to be included in the proposed Infrastructure Investment Program, with descriptions of project objectives-

³ The Company also notes there is a robust interest in cannabis growing facilities across the entire JCP&L service territory footprint, where developers are converting abandoned warehouse space and retail box store locations into these facilities.

JCP&L's EnergizeNJ Engineering Evaluation and Report

- including the specific expected resilience benefits, detailed cost estimates, in service dates, and any applicable cost-benefit analysis for each project;
- 4. An Infrastructure Investment Program budget setting forth annual budget expenditures;
- 5. A proposal addressing when the utility intends to file its next base rate case, consistent with N.J.A.C. 14:3-2A.6(f);
- 6. Proposed annual baseline spending levels, consistent with N.J.A.C. 14:3-2A.3(a) and (b);
- 7. The maximum dollar amount, in aggregate, the utility seeks to recover through the Infrastructure Investment Program; and
- 8. The estimated rate impact of the proposed Infrastructure Investment Program on customers.

Each of these requirements is addressed in the JCP&L EnergizeNJ filing. In addition to requirement 3 above, this Report also provides support in connection with aspects of requirements 1, 2, 4, 5 and 6.

VI. JCP&L Electric Distribution Reliability

Introduction

As indicated earlier, the proposal to undertake EnergizeNJ at this time is driven by several factors. Among them is the Company's recent past reliability performance, as well as consideration of the challenges that are faced in improving this performance over the long term. These challenges include the facts and circumstances regarding the Company's electric system and its prior performance, an appropriate perspective about the evolving standards against which its ongoing performance will likely be measured, as well as reasonable and available means and mechanisms to meet such standards. At the outset, it is necessary to make an assessment of the Company's reliability performance, and the impacts of, and lessons learned from, the Company's initial Reliability Plus program.

Reliability Overview

Since 2017, JCP&L's performance against the applicable reliability indices has trended unfavorably (upward), even though JCP&L's reliability performance has met at least the applicable minimum performance requirements, except for the Company's SAIFI performance in 2020 and 2022 (*see* Figure 3 below). With the exception of the NNJ Region's 2020 SAIFI, and both Regions' 2022 SAIFI performance, the Company has otherwise performed better than the Board's minimum reliability levels over the past decade.

JCP&L's EnergizeNJ Engineering Evaluation and Report

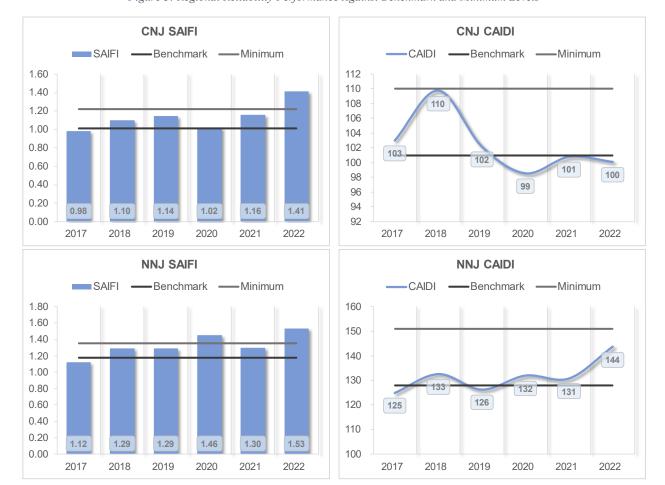


Figure 3: Regional Reliability Performance Against Benchmark and Minimum Levels

The Company has analyzed and considered the circumstances of this performance, including consideration of climate change on the concept of minor weather days and the impacts of major projects on the transmission system with anticipated longer range positive impacts but shorter-term reliability risks associated with the effects of the projects on distribution system configurations, which temporarily increase the risk of outages.

The Company has also considered the performance impacts of JCP&L's Reliability Plus investments, which JCP&L has concluded have demonstrated outage avoidance since the Reliability Plus program's completion (meaning without such investments, the Company's reliability performance in 2020-2022 may have been *worse than achieved*). In this regard, Figure 4 illustrates the initiatives and programs, including the initial Reliability Plus program, the Company has undertaken since 2017.

JCP&L's EnergizeNJ Engineering Evaluation and Report

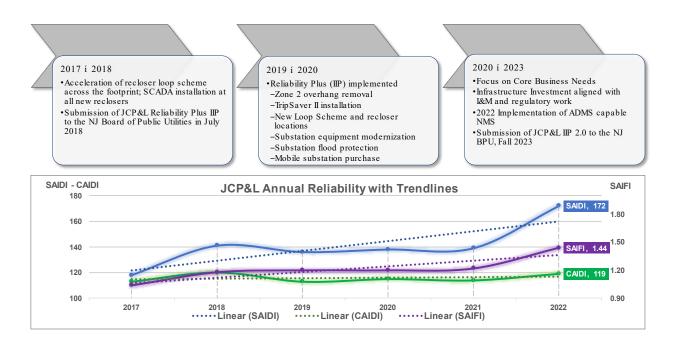


Figure 4: JCP&L Reliability Performance Trends

As depicted in Figure 4 above, over the last five years, including Reliability Plus, JCP&L has made investments to address current circumstances, including the negative trends. With EnergizeNJ, the Company seeks not only to accelerate investments, but also to drive toward its strategic vision in which EnergizeNJ serves as an initial stepping-stone towards creating a platform for more than incremental operational and reliability improvements over time, as well as transformational change to the distribution system.

Looking at current reliability trends and ahead to the implications of those trends, customer demands and a need to begin to prepare the electric distribution system for the transition to greener, renewable DER continue to drive the need for improved reliability and accelerated system modernization. In the past three years since the global COVID-19 pandemic, more customers are working from home and relying on their electric service to perform their day-to-day jobs. According to US Census Bureau data, the percentage of New Jersey residents working from home has increased from about 5% in 2019 up to 22% in 2021. Adding consideration for electric vehicle initiatives, as well as manufacturing and infrastructure development and trends, it is logical to anticipate further increases in customer expectations regarding the quality of the residential reliability experience to accommodate a changing work and lifestyle environment for many, if not most, New Jersey residents.

JCP&L's EnergizeNJ Engineering Evaluation and Report

⁴Figure 5: Distribution System Increasingly Find More Distributed Energy Resources

With respect to DER, given the State's energy goals, JCP&L not only continues to see growth in the amount of DER implementation across its footprint, but reasonably anticipates this trend to continue, given New Jersey's clean energy goals. As described in the Company's 2022 Annual System Performance Report ("ASPR"), at the close of 2022, there were a total of 47,483 retail netmetered customers on the JCP&L system and an additional sixty-nine wholesale grid connected generators and battery storage locations connected at 69 kV or less. The current levels of DER equate to about one in every twenty-three customers having solar panels behind the meter and this increasing trend (up from one in every twenty-seven customers at the close of 2021) is anticipated to continue, creating a need for more operational visibility as to the real-time status of the distribution system.

In addition to the foregoing, the Company has also considered the origins and nature of its electric distribution system. In this regard, the Company is informed by the facts that JCP&L's electric system predominates in radial circuits, which traditionally are, or have been, the most common design used by electric companies. This is found especially in those areas with rural and dispersed customer settings. The fact that JCP&L's electric system can be characterized as predominantly a radial distribution system is not surprising given the rural and mixed character and extent of its service territory, recognizing that today's JCP&L is an amalgamation of some 75 to 100 small electric companies in New Jersey with roots extending back as early as the mid-1800s. Radial circuits, historically and currently, are the least expensive to plan, construct and maintain but, historically, they are also vulnerable to faults that cause service failures to customers without alternative feeders to serve them. In contrast, looped distribution system circuits can permit the electric company to supply customers from two or more sources, depending on the complexity of the available infrastructure. These looped types of circuits are more complicated and expensive to plan, design and maintain, but do offer increased operational flexibility and reliability advantages

_

⁴ Storage and Distribution Generation Engineering Guide. EPRI, Palo Alto, CA: 2022. 3002023483. §1-2.

JCP&L's EnergizeNJ Engineering Evaluation and Report

over radial circuits. The installation of strategic sectionalizing devices and circuit tie points by JCP&L has created some additional operational flexibility that increases reliability, but it does not rise to the level of changing the essential nature of these circuits as radial. Indeed, over the years, the Company has been implementing manual and automatic distribution circuit tie schemes, where those opportunities exist. As discussed in the 2022 ASPR,

As of the end of 2022, JCP&L has a total of 114 automatic distribution circuit tie schemes in place, with 81 of these tie schemes also having SCADA control. Plans for installing SCADA control on the remaining 33 circuit tie schemes that do not yet have SCADA control are in progress, with a number requiring and awaiting commissioning (or re-commissioning). Such circuit tie schemes automatically transfer customers to an adjacent circuit in the event of a circuit lockout, which helps to reduce the number of customers affected from a sustained outage. Each automatic circuit tie scheme typically involves two different circuits.

2022 ASPR at p. 45.5

Collectively, these conclusions, trends and forecasts create a basis upon which to propose additional accelerated investments in the JCP&L distribution system. However, before beginning to discuss details regarding its proposals in EnergizeNJ, it is important to also address some additional issues that pose further support for the Company's decision to propose a second IIP at this time.

Recent Regulatory Changes Create an Immediate Performance Gap for JCP&L

The Company's review and analysis of the recent changes in the Board's reliability regulations effective as of February 2023 has led it to anticipate that reliability performance and reliability performance levels by which it is measured will likely result in a worsening of the Company's reported reliability performance (as compared to 2022 standards), creating an immediate performance gap. First, as a practical matter, with the change to the definition of a Major Event, the number of historically excludable major events will be reduced in the Company's going-forward reliability reporting. Second, the change in the calculation of each electric distribution company's ("EDC") benchmark and minimum reliability levels will now occur annually based on the most recent five-year period, which will likely also be reflected as part of the performance gap. Implementation of the accelerated measures within this Program additionally offers (i) a comprehensive approach to closing this anticipated performance gap (based on historical system performance), and (ii) a detailed review of opportunities for outage avoidance and reduced outage duration.

⁵ However, it should be noted that the load transfers accommodated by these tie schemes may be limited by the available capacity of each circuit where they are installed.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Analysis and Quantification of the Performance Gap

The Company quantified the expected performance gap resulting from current reliability trends and the impacts of the changes in regulations. As a baseline, the Company reviewed its "All-In" reliability performance and assumed no sustained outage data was excludable. From there, the Company analyzed which major events would meet the revised regulations based on one of the following assumptions:

- 1. Within a 48-hour period, 10% of customers in either operating region have experienced a sustained outage;
- 2. State of Emergency events ended upon the restoration of all customers affected by an initiating event; or
- 3. Mutual Aid events will be considered where the aid provided drives higher than minimum CAIDI performance for an operating region.⁶

Figure 6 below illustrates the results of this analysis, with the blue data being the historically reported SAIFI performance for each region, and the gray data being the estimate of the added contribution to SAIFI performance based on the assumptions outlined above.

Figure 6: Estimated Performance Gap

⁻

⁶ The third assumption is a straightforward and data driven approach for historical event review and analysis. However, this assumption does not represent the Company's interpretation of item 4 of the Major Event definition (N.J.A.C. 14:5-1.2).

JCP&L's EnergizeNJ Engineering Evaluation and Report

The result of this analysis is shown in the table below, which provides the anticipated performance gap for each operating region. Based on this analysis, the 5-year average gap as compared to the 2022 Minimum SAIFI for each region is estimated in the table below.

Performance Gap		
CNJ	NNJ	
0.23	0.38	

This drives an overall JCP&L expected performance gap (compared to 2022 standards) of 0.29 SAIFI, equating to about 330,000 additional customer interruptions being added annually to JCP&L's performance measures. Figure 7 below illustrates the future impact of this performance gap when considering the expected increase in measured reliability performance and how that will affect the five-year rolling average reassessment of benchmark and minimum reliability performance levels.

Figure 7: Future Year Benchmark and Minimum Estimations

In Figure 7, the blue data shows actual performance levels, and the gray data shows estimated Year End performance based on the performance gap analysis described above. In Figure 7, it is evident that the future five-year average, or annual benchmark reliability level, will continue to rise year over year until it levels out after the five-year period ending in 2027. For the purposes of this analysis and calculation of the minimum performance level, the standard deviation of the future five-year average is assumed to be the same as the standard deviation of the 2018 – 2022 period. Future year benchmark and minimum performance levels are shown as dotted lines to demonstrate these as an estimate.

JCP&L's EnergizeNJ Engineering Evaluation and Report

In summary, it should be recognized that based on this average anticipated performance gap and the annual recalculation of reliability performance levels, at the end of the five-year period following the above-described regulatory changes, the BPU should expect that, without mitigation, JCP&L's benchmark performance levels may rise by the estimated five-year gap amounts listed above plus 1.5 times the historical standard deviation used to calculate the 2022 minimum reliability levels.

Reliability and Distribution Circuit of the Future Vision

FirstEnergy's Distribution Circuit of the Future vision was briefly mentioned earlier in this Report. JCP&L intends that this Program will serve as a foundational step in the process of implementing that vision. However, following on the foregoing Reliability Overview, it is important to explain that FirstEnergy's Distribution Circuit of the Future vision provides the lens through which the Company views the current state of its reliability performance, the current developments that will affect it, and the future trends and developments that can be anticipated to challenge it. Indeed, the narrow and wide-angle features of that lens permit the Company to see not only the details of the necessary foundational elements, but also the possibilities for managing its distribution system over the long-term to better meet and anticipate customer expectations within the BPU's regulatory framework. The vision flows from a concept developed by FirstEnergy in partnership with the Electric Power Research Institute ("EPRI"). EPRI is an independent, non-profit energy research and development organization that is committed to ensure the public has clean, safe, reliable, affordable, and equitable access to electricity. The means by which EPRI set out to accomplish these goals was to collaborate and network with industry peers, identify, and solve critical and emerging issues, all while ensuring their research and guidance brings benefit to the public. Because the distribution landscape was changing at an accelerated pace to accommodate and integrate DER, EVs, and growing customer expectations, starting in 2018, EPRI held multiple workshops with many utilities, including FirstEnergy, to outline the "Grid Modernization Playbook: A Framework for Developing Your Plan".

⁷ Grid Modernization Playbook: A Framework for Developing Your Plan. EPRI, Palo Alto, CA: 2019. 3002015238. §3.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Figure 8: Foundational Areas of Grid Modernization

Planning

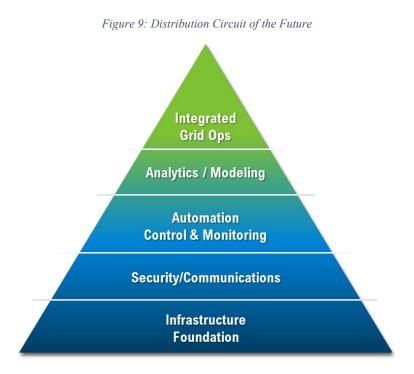
Models, methods, and tools to support asset and resource planning functions to ensure safe, reliable, and efficient modern system.

Operations

Monitoring, controls, automation technologies, and tools to optimize and ensure safe, secure, and reliable operation of the modern system.

Supporting Technologies

Data capture, management, communications, and devices that support the planning and operation of the modern system.


Physical infrastructure

Transformers, poles, wires, and other physical apparatus.

The foundational areas of the Grid Modernization playbook or "building block" outlined in Figure 8 above depict the relationships between core utility concepts and components of the distribution system. This "building block" is the key to drive a relationship between the various components of the distributions system as the means by which to modernize the grid. Utilizing the "building block" philosophy, in a collaborative exercise, FirstEnergy and EPRI created the "Distribution Circuit of the Future." As seen in Figure 9 below, there are six layers to the circuit of the future model that build upon each other to achieve the pinnacle – the long-term reality of a fully integrated advanced distribution system.

JCP&L's EnergizeNJ Engineering Evaluation and Report

The concept provides a vision of the future that includes the integration of physical distribution circuit assets, communications systems, cyber security systems and data analytics that is enabled by technologies to enhance capacity, extend opportunities for electrification and DER integration, as well as providing increased resiliency and hardening.

The vision represents a milepost to be driven toward over the long-term and nurtured and enabled by periodic incremental investments that support legacy distribution system replacements and upgrades. The vision is built upon a solid infrastructure foundation that encapsulates customer needs and a level of futureproofing. This includes continuing improvements of layered security and communications which support operating a system that is protected against vulnerabilities with an overall improved and integrated set of communication tools. This will enable further automation controls and/or monitoring advancements with improvements to real-time data and operational decision-making, which in turn allows for advanced analytics and modeling. These concepts support an integrated grid that provides options to address outage avoidance, automation, outage reduction, and dynamic load support.

As conceived, the Distribution Circuit of the Future vision provides a sound engineering roadmap, which allows for operational and investment decision-making, planning, and coordination that is informed by, and consistent with, achieving the goal of integrated grid operations through consistent analysis and actions. Thus, infrastructure foundational decisions must, to the degree practical, foreshadow to the future either by (i) combining with simultaneous decisions related to security, communications or automation control and monitoring that allows for advanced analytics

JCP&L's EnergizeNJ Engineering Evaluation and Report

and modeling, or (ii) setting the stage for accommodating and enabling later decisions to actualize the higher-level building blocks providing such capabilities.

Before exploring each of the building blocks in detail, it is important to call out the two key objectives behind this Distribution Circuit of the Future model:

- 1. Improve the reliability and resiliency of distribution circuits through the application of cost-effective asset replacement/upgrade strategies. The model will support improvements in capacity and operational flexibility and lay the foundation for a distribution modernization platform that can enable future smart grid applications.
- 2. Support the design of distribution circuits that incorporate strong three-phase backbones that can accommodate and enable greater circuit tie capability and, therefore, provide for greater operating flexibility, such as and including automatic circuit ties. This will improve opportunities for the Company to reduce the duration of customer outages while working to make repairs to the distribution system.

The "Infrastructure Foundation" building block refers to distribution design and construction to transform current electric distribution infrastructure to accommodate the integrated grid operations future. The Distribution Circuit of the Future must accommodate the technological trends and the challenges of an evolving sophistication in customer needs. Among other things, in this regard, engineering designs must continue and increase the pace of transition from radial to other configurations, including the loop design and from passive/reactive management to active management that is facilitated and enabled by real-time line-of-sight of the distribution system all the way to the customer level. The "Security/Communications" building block refers to the engineering design and construction of security and communications systems that create and strengthen a security strategy that safeguards the critical distribution system while enabling indepth active management of the distribution system to accommodate operational and security needs. The "Automation Control and Monitoring" block refers to the engineering design and construction, which takes advantage of the opportunities presented by the evolving progress in implementing over time the foregoing building blocks. The "Advanced Analytics and Modeling" building block, likewise, refers to the engineering design and construction that turns the increasing levels of detailed data (from the other building blocks) into holistic planning and actionable realtime assessment and response. The pinnacle building block, "Integrated Grid Ops," refers to a centralized monitoring system that is turned over to a distribution automation application through a network of sensors and devices. This ultimately provides distribution control center ("DCC") operator indication and control of the distribution automation system and field devices.

The Distribution Circuit of the Future vision was used as a guide for the projects proposed for implementation in the Program. As such, the EnergizeNJ proposal set forth in this Report and the Petition it supports represents the initiation of a long-term approach for using incremental investment opportunities to drive improvement and technological advancement across legacy

JCP&L's EnergizeNJ Engineering Evaluation and Report

distribution systems. Importantly, the Company is not building a distribution system from scratch; but rather, it is accommodating the challenges presented by an existing distribution system with a history of origin and development over many decades. Therefore, this Report recognizes that it is imperative for JCP&L to take a 'layered' approach that confronts what currently exists with component designs that address each aspect of the Distribution Circuit of the Future model within the proposed Program, while also addressing the reliability performance gap (compared to 2022 standards) associated with new regulatory requirements, over the course of the Program's five-year period.

VII. EnergizeNJ Cost Benefit Analysis

Cost Estimating

As a precursor to the discussion of Program benefits, it is important to illustrate the cost estimating approach utilized by the Company in developing the project component costs. The engineering cost estimates have been developed in alignment with standard Company practices for budgeting purposes. Throughout scoping of the work proposed within this Program, comparable actual historical project component costs served as a basis for the costs that were then unitized for future project component estimates. Project components focused on outside plant also applied unitized estimates based on the Company estimating application, CREWS, which is a software system that generates cost estimates based on specific designs. Such cost estimates also include ancillary project costs, such as traffic control and permitting. Likewise, for substation-related cost estimates, historical costs, which include indirect charges such as substation engineering and design costs, were referenced and reviewed. In all cases, project component estimates reflect the prevailing contractor and labor rates and material costs.

Each project component description within this Report, will further outline the annual planned investment by year. Additionally, Attachment 2 to this Report will list the distinct locations where each component project will take place, accompanied by the engineering cost estimate and the proposed in-service time frame.

Benefit Analysis

With a basic understanding of the cost estimating process deployed for EnergizeNJ, it is appropriate to discuss how anticipated benefits that the Company expects the Program will deliver are calculated. In that regard, while this Report analyzes the components of the proposed projects, there will be some components that, on a standalone basis, have a benefit-cost analysis ("BCA") of less than 1.0. However, the total package of components making up each project results in an overall BCA greater than 1.0. Recognizing the layered nature of the Distribution Circuit of the Future model, it should be expected that certain project components provide greater benefits than others, but it must be recognized that all components are necessary to support and achieve the stated long-term integration objectives. This was explained in some detail in, and consistent with the thrust of the aforementioned Distribution Circuit of the Future vision and roadmap. EnergizeNJ is designed to provide meaningful benefits to customers, both qualitative and quantitative. Many

JCP&L's EnergizeNJ Engineering Evaluation and Report

of the qualitative benefits will be discussed more specifically within each project and component project description outlined below.

To quantify the benefits to customers associated with Program projects, the Company used the Interruption Cost Estimate ("ICE") tool, sponsored by the U.S. Department of Energy ("DOE"). This tool was developed by Lawrence Berkeley National Laboratory and Nexant, based on extensive research. The ICE tool is used to estimate the dollar benefits associated with avoided outages and reductions in restoration time. The results of the ICE tool analysis for EnergizeNJ are shown in Figure 10 below, and will be discussed in further detail later herein, reflecting anticipated dollar benefits from improvements in general reliability and in the Company's ability to restore power following a major storm event:

Nominal (\$ in millions) **Benefits Benefits** Costs Benefit/Cost Ratio Total Non-Storm Storm \$ 685 2,677 3,361 \$ 931 3.6 Note that the DOE ICE tool limits storm benefits to 24 hours

Figure 10: Benefit to Cost Ratio

	No	min	al (\$ in millio	ns)		N	ΙPV	(\$ in millions)	
В	enefits		Costs	Benefit/Cost Ratio		Benefits		Costs	Benefit/Cost Ratio	
\$	3,361	\$	931	3.6	\$	937	\$	756	1.2	
Note that the DOE ICE tool limits storm benefits to 24 hours										

For consistency, the Company performed its benefit-cost analysis using the ICE tool in a similar fashion as was performed for the Reliability Plus investment program. First, the Company analyzed the historical outage information for circuits addressed in EnergizeNJ projects for the period 2018 through 2022 to develop bases for measurement of reliability improvement in terms of SAIFI and SAIDI. The five-year reliability data was considered in three data sets:

1. Non-Storm: This data set contains all historically considered blue sky and minor weather outages and was adjusted conservatively to include an estimate of those historical outages that would no longer meet the timeframe limitation of the revised Major Event definition criteria as described in the first assumption within the Reliability Performance Analysis section of this Report (page 11). This data set was the driver for component project definition criteria and location selection since this

-

⁸ Estimating Power System Interruption Costs: A Guidebook for Electric Utilities. EPRI, Palo Alto, CA: 2022. DE-AC02-05CH11231. §13.

JCP&L's EnergizeNJ Engineering Evaluation and Report

would be comparable to the measurable performance under the new regulations moving forward.

- 2. Storm: This data set was then the remainder of the analysis performed above; this was the set of historical outages which would continue to meet the limiting timeframe of the 10% Major Event definition criteria. Storm benefits are considered to be separate from "Non-Storm" benefits of the work to be performed.
- 3. Severe Weather Events: This data set contains events which generally are unavoidable and less frequent, and, therefore, are not typically calculated as outage events that can be offset. For purposes of the five-year period used for this Program, nor'easters Riley and Quinn, as well as Tropical Storm Isaias have been included in this category. However, the benefits associated with the offsetting of outage impact and duration of these types of severe weather events were only considered for one project component (*i.e.*, Replacement of Coastal Switchgear) within this Program proposal, the reasons for which are discussed in that component project section of this Report.

These bases for the benefit calculation assure that JPC&L's focus (including to offset the earlier discussed comparative reliability performance gap) takes account of all relevant and related data, rather than simply utilizing historical categories of events, which would be inconsistent with the new regulations on a forward-looking basis.

Next, the Company used the approach set forth in a 2008 report published by EPRI entitled "Quantifying Distribution Reliability Benefits" as a framework for the Company's estimation of reliability improvements upon installation of distribution system equipment included in EnergizeNJ. Specifically, the EPRI methodology was used to estimate reductions in Customer Minutes of Interruption ("CMI") (*i.e.*, the total outage minutes that customers experience) and Customers Interrupted ("CI") (*i.e.*, the total number of customers that experience an outage). This framework was built upon with more specific engineering evaluations for each project component, which are defined within the BCA file (Electronic Attachment 4 to this Report 10). These results were used to develop post-EnergizeNJ plan SAIDI estimates and post-EnergizeNJ plan SAIFI estimates in both non-storm and storm periods. The SAIDI and SAIFI bases, and SAIDI and SAIFI post-plan estimates for non-storm and major storm periods discussed above, are inputs to the ICE tool, which uses these inputs to quantify the dollar benefits to customers from proposed distribution

-

⁹ Quantifying Distribution Reliability Benefits. EPRI, Palo Alto, CA: 2008. 1015855. §3-1 & 3-2.

¹⁰ Attachment 4 to this report is provided in CD format only and is considered Confidential. This electronic attachment is an Excel (.xlsx) file made up of forty-five data and analysis tabs. The first tab of this file ("Assumptions") outlines the benefit assumptions for each component project within this Program. Three tabs within the file ("Benefits", "Budget" and "FilingTable") are dedicated to the Program budget and summarizing the benefits calculated from the DOE ICE tool and the overall Program Benefit to Cost Ratio. Two tabs within this file ("JCPL Ckts" and "2018-2022 Outages") provide the circuit and outage history used as a baseline for this Program's benefit calculations. The remaining tabs provide detailed analysis for each component project, including location selections, pre- and post-plan reliability information, and DOE ICE tool results.

JCP&L's EnergizeNJ Engineering Evaluation and Report

system enhancements. The Net Present Value of the customer benefit driven by SAIDI and SAIFI post-plan improvements sum to a total of \$937 million.

The ICE tool also uses inputs that are specific to the Company, such as the number of customers and average annual energy usage by customer class, as well as certain state specific inputs determined by the DOE, such as number of commercial and industrial customers in certain industries, median household income, and time of day outage information, to quantify dollar benefits.

Further discussion will be incorporated into each project overview and component project discussion within this Report to explore the benefit analysis performed as well as the qualitative benefits within this proposed Program.

VIII. The EnergizeNJ Program

This Program is a portfolio of three main projects: Grid Modernization, System Resiliency, and Substation Modernization. Figure 11 below summarizes the projected JCP&L EnergizeNJ costs per project per year and in total.

Projects	2024	2025	2026	2027	2028	2029	Total
Grid Modernization	\$ 59.26	\$ 36.77	\$ 13.28	\$ 106.04	\$ 36.77	\$ 19.17	\$ 271.28
System Resiliency	\$ 65.30	\$ 137.22	\$ 107.09	\$ 112.91	\$ 72.44	\$ 64.32	\$ 559.28
Substation Modernization	\$ 7.90	\$ 19.82	\$ 17.40	\$ 24.33	\$ 18.81	\$ 11.73	\$ 99.98
Projects	\$132.46	\$193.81	\$137.77	\$243.28	\$128.02	\$ 95.22	\$ 930.55

Figure 11: JCP&L EnergizeNJ Project Plan (in millions)

The three main Program projects provide near-term customer benefits, build on the investments made in JCP&L's Reliability Plus program, and continue to prepare the Company's distribution system for the future of technology and electrification by integrating advanced equipment with control and monitoring capability. Consistent with the Distribution Circuit of the Future vision outlined above, EnergizeNJ represents a layered approach for accelerating the distribution system modernization and preparing for the future of the distribution grid. The rest of the discussion in this section provides a description of the three projects (and their supporting components), the project benefits, the selection of project components and a summary of each project's cost over the five-year term of the Program period. Importantly, the schedules included in Attachment 2 to this Engineering Report detail the distinct locations for each component project in EnergizeNJ.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Project 1: Grid Modernization¹¹

The Grid Modernization project addresses core capability and functionality of the distribution circuits. Core capability and functionality refers to support structures, circuit capacity and switching/sectionalizing. To maximize the benefits of technology integration when constructing the Distribution Circuit of the Future, it is first necessary to consider and address these foundational elements. The components of this Program that are focused on infrastructure investment will do so to enable additional capacity for circuit ties, accommodate greater DER penetration and support electrification, while also driving reliability benefits associated with outage avoidance, or CI reduction, and storm hardening.

In addition to the foundational elements of JCP&L's distribution system, the Grid Modernization project will also incorporate the Distribution Circuit of the Future aspects of Communications, Control & Monitoring, as well as Analytics and Modeling in the areas where Grid Modernization component projects are identified to take place. This approach drives a cost-effective solution to modernizing the JCP&L distribution system by holistically addressing both short- and potential long-term service requirements and customer expectations. In the short-term, the components of the Grid Modernization project will provide solutions to address reliability performance with a focus on outage avoidance and, therefore, will improve JCP&L's SAIFI performance. In the long-term, the Grid Modernization project components will proactively offset potential future capacity constraints and communication gaps with field devices.

This Grid Modernization project includes components to provide accelerated distribution line work to enable realization of the Distribution Circuit of the Future vision that will offer storm hardening

_

...underpins connecting the (Energy Master Plan's ("EMP's")] target for 7,500 megawatts (MW) of offshore wind, 17,000 MW of solar energy and 2,500 MW of energy storage by 2035, while paving the way for higher DER adoption levels to achieve the long range deeper decarbonized energy systems envisioned in the 2019 update to the Global Warming Response Act (GWRA). The NJ economy will benefit from increased local jobs, private sector investments, accelerated clean resource adoption and improved resilience. A modernized grid is part of a broader solution set that can enable other incentives and accelerators that support the state's ongoing work to realize a clean energy future. It is generally accepted that in order to meet EMP goals, NJ will need to adapt current processes and strategically modernize the electric grid.

See p. 1 of the report. In particular, Guidehouse Inc. was retained to assist BPU staff in the grid modernization effort related to how New Jersey could increase renewable resource interconnection for DER. While the Company's usage of the term "grid modernization" in this Program does not conflict with the manner in which the term is used in the Guidehouse report or in the BPU's Order accepting same, the Company's Program "grid modernization" is both more broadly (i.e., not merely pertaining to interconnection of DER resources) and more narrowly (i.e., honed in on the JCP&L distribution system) focused.

¹¹ The Company recognizes that the term "grid modernization" has been, and is, used in different contexts to mean different things. For instance, in the BPU Order dated November 9, 2022, in BPU Docket No. 0021010085, the BPU accepted the report entitled *Grid Modernization Study: New Jersey Board of Public Utilities report* that was prepared by Guidehouse, Inc. The Order also directed BPU Staff to develop the necessary revisions to the interconnection rules at N.J.A.C. 14:8-5.1 *et seq.* to immediately incorporate certain of the recommendations contained in the report. In addition, the Order directed Staff to conduct an expedited process to move forward on implementing the remainder of the report's recommendations. In that report, "grid modernization" is referred to in the context of a strategy that:

JCP&L's EnergizeNJ Engineering Evaluation and Report

benefits as well as additional capacity for electrification, DER integration, and operational flexibility (i.e., increased circuit tie capability) during sustained outages.

This project also contains a component that accelerates the Company's investments in its underground infrastructure with an Underground Cable Replacement component project. With a focus on storm hardening and outage avoidance, this project also includes a Selective Undergrounding component, which will relocate vulnerable overhead line sections underground.

Indeed, the five components of this project aim to accelerate infrastructure investments to build JCP&L's Distribution Circuit of the Future.

In this regard, the Grid Modernization project components are intended to provide a layer of additional circuit protection and sectionalization. This integration of additional protective devices will reduce the number of customers affected during a sustained outage, and in some cases where a temporary fault is present, reduce what was a sustained outage to a momentary interruption for customers downstream of newly installed devices.

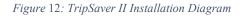
Per the benefit analysis described in Section VII, this project has an overall Benefit to Cost Ratio of 1.0.

		Nominal (\$ in millions)					NPV (\$ in millions)					
Customer Benefit Project	Ben	Benefits Costs		Benefit/Cost Ratio	Benefits Benefits		Costs		Benefit/Cost Ratio			
Grid Modernization \$		1,115	\$	366	3.1		\$ 301	\$	303	1.0		

In the following sections, each Grid Modernization ("GM") Component will be discussed in more detail.

GM Component: Lateral Fuse Replacement with TripSaver II

This project component will replace lateral fuses with S&C¹² TripSaver II cutout-mounted reclosers building on the Reliability Plus experience where the Company installed 777 of these devices in 2019 – 2020. A lateral is a radial line tapped from the three-phase portion of a circuit. In the event of a temporary fault, a traditional fuse operates causing an extended outage until the outage is investigated by a troubleshooter, repairs are made, and the fuse is replaced. These temporary faults are referred to as transient faults. The term transient fault suggests that such a fault is self-correcting and typically only lasts a short duration. While that may be the case for the fault that initiated the interruption, once the protective fuse operates, there is no immediate opportunity for the customers interrupted to be restored after the fault is cleared. An example of such a fault would be an object in brief contact with a distribution line.


¹² Referring to the S&C Electric Company, which produces the TripSaver II device, among other things.

_

JCP&L's EnergizeNJ Engineering Evaluation and Report

The S&C TripSaver II is a single-phase automatic reclosing device that fits in the existing fuse holders. Unlike a fuse, which is destroyed when it operates, the TripSaver II opens the circuit when a fault occurs and, in the case of a transient fault, is able to reclose the circuit and restore service once the transient fault has cleared. The TripSaver II reclosers automate service restoration such that when transient faults clear, customers will experience a momentary outage, with service restored in less than ninety seconds. The TripSaver II prevents transient faults (as would occur if a limb or animal impacted a lateral) from becoming sustained outages. Figure 12 and Figure 13 below illustrate the TripSaver II in isolation and as installed on the distribution system.

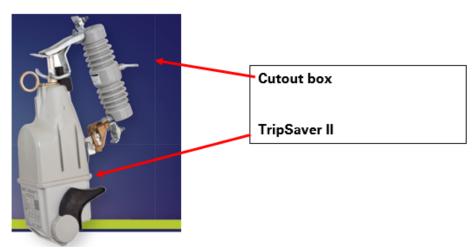


Figure 13: TripSaver II – Field Installed Device

JCP&L selected fuse locations for installation of TripSaver II by first identifying the zones of protection (i.e., the area on the circuit between the fuse and the next protective device where

JCP&L's EnergizeNJ Engineering Evaluation and Report

damage would cause the fuse to operate) for fuses sized 25 amperes ("amps") up to 140 amps. Locations for this project have been identified based on five-year fused lateral performance for fuses which have operated at least one time in the defined period. The Company has identified an additional 2,069 TripSaver II device installations across 1,094 distinct locations and 487 circuits. The Company eliminated from consideration fuses, which protect 34.5kV, 4.8kV, and underground distribution systems due to operating practices and because these configurations may limit the benefit of the TripSaver devices.

This project represents a cost-effective means to bring reclosing technology to customers served from laterals and has a proven historical benefit based on JCP&L's Reliability Plus and ongoing base capital investments. In reviewing the TripSavers installed during the Reliability Plus program, an 80% average benefit has been identified for outage causes that are temporary in nature. This means that for such identified outages, it is expected that 80% will no longer have a sustained outage impact and result.

Planned investment by calendar year for this Lateral Fuse Replacement with Tripsaver II GM component project is shown in terms of millions of dollars in the table below:

Project Component		2024		2025		2026		2027		2028		2029		Total	
Lateral Fuse Replacement with TripSaver	\$	2.47	\$	6.01	\$	1.67	\$	3.98	\$	2.16	\$	1.30	\$	17.59	

GM Component: Distribution Circuit of the Future

The Distribution Circuit of the Future model represents a step-function change for the JCP&L distribution system, and this proposed Program makes significant progress to this end; however, not every element of the Distribution Circuit of the Future vision is, or can be, addressed in EnergizeNJ. For the selected circuits, EnergizeNJ focuses on bringing forward the elements of the Distribution Circuit of the Future model that most significantly benefit reliability, so as to address the identified SAIFI performance gap. Figure 14 below is a condensed pictorial version of the Distribution Circuit of the Future, which highlights the core infrastructure foundational components that will be discussed below in more detail. An expanded version of this illustration is included as Attachment 3 to this Report.

JCP&L's EnergizeNJ Engineering Evaluation and Report

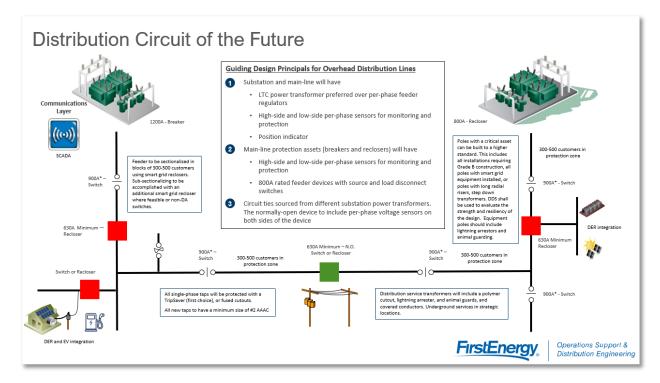


Figure 14: Distribution Circuit of the Future

The typical annual process for addressing high priority circuits ("HPC") from year-to-year is to investigate and seek to remedy specifically identified problem areas based on that years' performance. However, year over year, whether or not in successive years, some circuits continue to repeat as poor performers. Another common issue with a largely radial distribution system is that it typically has limited tie opportunities/capabilities and increased outage exposure due to the length and capacity of such circuits. On an annual basis, specific problem line segments will be addressed. However, HPC does not address circuits as a whole in a manner that can strengthen the core infrastructure and available tie capability.

This project component will undertake a significant investment to systematically upgrade identified sections of conductors, which are defined within this component summary. JCP&L currently utilizes 397.5 All Aluminum Conductor since this conductor's ampacity has met system loading needs for most three-phase mainlines. This project component will use updated design guidance to accommodate circuit load up to or over 800 amps, as required, on the mainlines. When this conductor is installed on Class 4 poles, it creates structural loading challenges for the poles as well as the older crossarms. Upgrading mainline poles as required (based on pole loading design calculations), along with upgraded structural guying, will reduce pole failures during all weather conditions. With these component project efforts, the Company plans to upgrade poles and crossarms, upgrade conductors, remove step transformers, install animal guards, and upgrade hardware and other equipment, all where needed.

JCP&L's EnergizeNJ Engineering Evaluation and Report

The lower capacity conductor that was installed historically, as the distribution system expanded, consisted mainly of #2 ACSR as well as various size copper conductors, some of which remain in service. These conductors are generally rated between 200 and 400 amps and do not have the tensile strength of larger conductors. These generally smaller conductors are more prone to damage and failure during major storms and other weather events. Many of the locations where these smaller conductors are still in service are in 4kV areas and some have been spliced on multiple occasions. Upgrading these areas will eliminate low voltage conditions, improve resiliency, and increase capacity for DER hosting and electrification.

Moreover, the Company anticipates the benefit of increased circuit capacity for circuit ties and DER hosting capacity to result from this/these component project(s) with the consistent installation of a minimum of conductor with an 800-amp capacity as the three-phase main line conductor. When these projects are complete, the selected distribution circuits will have increased capacity for circuit ties to restore customers on nearby circuits during sustained outages, thus enabling improved resiliency and the reliability associated with greater switching and restoration flexibility. The distribution circuits will also be constructed to better withstand the weather conditions associated with coastal wind, snow and ice storms.

In alignment with the Distribution Circuit of the Future model, Supervisory Control and Data Acquisition ("SCADA") integrated recloser installations will be installed on circuits where work is occurring if those circuits currently lack the 300-500 customer premium operating district ("POD") protection. POD protection is a FirstEnergy term used to define a segment of the distribution system between SCADA controlled switches/reclosers that is used by the Distribution Automation process, to control the flow of power and connections within the system and reduce the number of customers per outage when able. Where identified, the SCADA operated recloser installation will limit the customer impact of sustained outages by about 50% due to the addition of PODs. These devices will offer the DCC operator visibility and control to more quickly identify the area affected by an outage, offer a more rapid response and consequently a reduction in switching time for restoration upon the completion of repairs.

Other work associated with these Distribution Circuit of the Future component projects will include installing animal guards on designated equipment and ensuring lightning arrestors are installed to meet Company standards on the overhead lines. These types of component projects, when proposed and undertaken individually and separately, may not provide significant quantitative benefits to the overall system. However, when undertaken and constructed in a collective and comprehensive manner, are expected to markedly reduce many outage incidents for the customers resulting from weather events, including even major events.

In the Company's review of the selected five-year period of outage data, the Company selected circuits that would have met the annual HPC criteria (after realigning the historical reliability performance with the adjusted Major Event definition regulations). Generally, circuits were selected if they would have met such criteria more than one time over the five-year period; however, over twenty exceptions were made for single occurrences based on recency and relative

JCP&L's EnergizeNJ Engineering Evaluation and Report

SAIDI contributions. Specific segments of the circuits selected to undergo this work scope are based on analysis of the historical reliability performance, conductor size and circuit capacity. Sectionalization selections were based on a population of the HPCs, which do not currently have a POD configuration.

In total, 157 circuits (as identified in the above selection discussion) will be addressed through this project component over the five-year period. Across these 157 circuits, 411 line-miles are planned to be upgraded, and 152 SCADA reclosers will be installed.

This project provides a benefit to the overall design and operation of JCP&L's distribution system by improving reliability and resiliency, increasing operating flexibility and preparing the distribution system for increased DER penetration and the challenges from increased electrification going forward. Also, by applying the core infrastructure foundations of the Distribution Circuit of the Future model to these and future upgrades to JCP&L's distribution system, a 45% improvement is estimated in certain outage causes, including but not limited to line and equipment failures, lightning and wind. This reduction in overall outage numbers is derived from engineering estimates based on results of similar programs across EDCs within FirstEnergy's footprint. This assumption has been applied to estimate reliability benefits for the specific line segments where work is planned and also has been prorated based on the percentage of feeders where work is planned to occur. This is to say, if 10% of a single circuit has been selected for this work, it is estimated to yield 10% of the projected 45% reliability improvement for the purposes of the BCA.

Planned investment by calendar year for the Distribution Circuit of the Future Grid Modernization component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Circuit of the Future	\$ 51.92	\$ 18.58	\$ 6.75	\$ 94.05	\$ 29.92	\$ 13.34	\$ 214.57

GM Component: Circuit Protection and Sectionalization

This component project will install reclosers on the mainline of select 4800-volt ("V") Delta distribution circuits. These reclosers will separate the circuits into PODs, reducing the customer impact for faults on the mainline.

A standard distribution circuit includes a three-phase mainline that originates from the substation with laterals that can be one to three phases which originate from the mainline. The mainline is protected by a circuit breaker or recloser in the substation that uses overcurrent protection schemes. These lateral branches will usually be protected by the coordination of an expulsion fuse or TripSaver, resulting in only a momentary interruption to the mainline. The substation circuit breaker or recloser operates in coordination with the downstream fuses and other protective devices (i.e., line recloser) to clear faults on the mainline.

JCP&L's EnergizeNJ Engineering Evaluation and Report

In many cases across the Company's 4800V Delta system, fuses are used on the mainline, which is illustrated in Figure 15 below. As has already been discussed, when an expulsion fuse operates as the result of a transient fault, there is no ability to restore service to customers downstream of the fuse until it is replaced by a troubleshooter. However, in some cases, instead of fuse installations on the mainline, there are 300-amp capacity switches, which require manual operation. Should a fault occur downstream of these devices, the interrupting operation occurs at the substation, creating an outage which impacts the whole circuit rather than a designated POD.

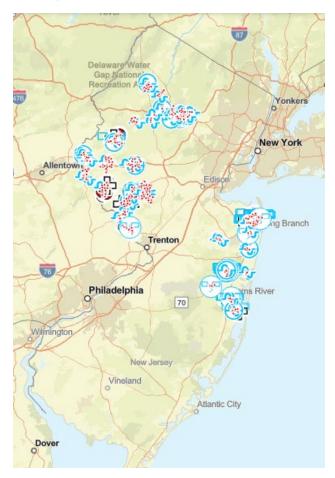


Figure 15: JCP&L 4kV Delta 200K Fuse Locations

This project component focuses on JCP&L's delta systems because these are phase-to-phase connected systems with no ground reference, and as such, require phase-to-phase and 3-phase faults under normal circumstances to operate a protective device. This means that on a three-phase distribution system, when a fault occurs, there is potential for back feed from the non-faulted phases. While JCP&L distribution work practices ensure safety is the number one priority before any work occurs on these delta systems, three-phase interrupting devices are an engineered solution to this potential safety exposure. Figure 16 below serves to demonstrate the difference between a delta (phase-to-phase connected) versus wye (phase-to-neutral connected) system.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Delta System

A phase-to-phase connected system with no reference to ground

Require a phase-to-phase fault to operate protective devices, under normal circumstances

Wye System

A phase to neutral connected system

Protective devices operate on a single phase-to-ground fault, under normal circumstances

Figure 16: Delta versus Wye System Diagram

With the installation of mainline reclosers as proposed here, a fault on the mainline that is downstream of a recloser, rather than a fuse, will be quickly isolated from the portion of the circuit between the substation and the recloser. If such a fault is transient and clears on its own, the recloser will restore the customers through the protection cycle of the device (estimated within ninety seconds or less). As discussed above, these reclosers will be installed as three-phase interrupting devices to eliminate back feed potential on the delta system if a fault is introduced.

Consistent with the Distribution Circuit of the Future discussion earlier, the Company will also install SCADA communications to these line reclosers. SCADA communications can be used to remotely open and close reclosers to connect and disconnect certain portions of the distribution circuit as real-time operating conditions warrant. Advanced reclosers, along with SCADA control, enable monitoring of the recloser status as well as system conditions (voltage, current, etc.) in order to more easily identify and respond to customer outages at the circuit level. This approach enables control center operators to be more efficient in responding to faults by sectionalizing distribution circuits to reduce outages to customers upstream of the fault. It also allows real-time decision-making regarding the use of system infrastructure to enable more rapid customer restoration.

This project targets 4800V delta Circuits for the replacement of 200K-type mainline fuse or 300 Amp capacity switches (solid blade) installations. Because this component project is set to replace mainline fuses on 4800V delta systems, the outage data used to identify candidates was limited to

JCP&L's EnergizeNJ Engineering Evaluation and Report

mainline fuse outages only. For this component, thirty-three circuits have been selected to install a total of thirty-nine SCADA reclosers in place of mainline fuses or switches, with one such example shown in Figure 17 below. These are circuits where installation of a recloser would create a POD based on the Distribution Circuit of the Future roadmap.

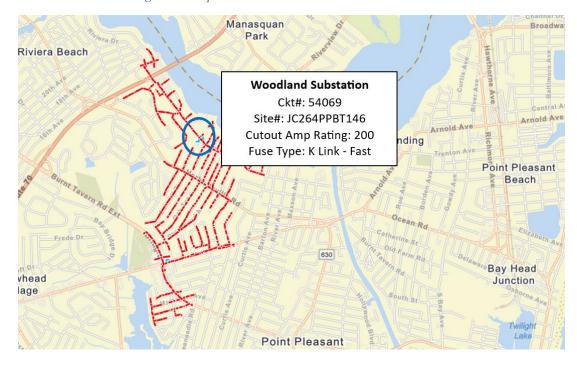


Figure 17: Proposed Recloser Location Woodland 54069 Circuit

This component project aligns with and supports the transition to the Distribution Circuit of the Future vision by providing additional automation and communication on the 4800V Delta circuits. Where reclosers are to be installed on 4800V Delta circuits, the recloser installations planned within this project component will be compatible with JCP&L's primary distribution voltage of 12.47kV and will not require modification or replacement when the operating voltage of these circuits is standardized to 12.47kV.

Planned investment by calendar year for this Circuit Protection and Sectionalization Grid Modernization component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Circuit Protection and Sectionalization	\$ 0.60	\$ 1.11	\$ 0.60	\$ 0.34	\$ 0.43	\$ 0.26	\$ 3.32

GM Component: Underground Cable Replacement

This component project will accelerate the replacement of primary underground cable. Investment in underground cable is designed to enhance the reliability of service to underground residential developments. When customers experience outages resulting from underground faults, the repairs

JCP&L's EnergizeNJ Engineering Evaluation and Report

are typically long in duration because they involve locating the fault, excavating to uncover the cable and replacement or repair of the cable or equipment located underground. In addition, performing this replacement work on a planned, accelerated basis versus an emergency basis will avoid long unplanned outages and be less inconvenient for customers.

One of the main causes of underground cable failure typically starts with water ingress into the cable, which, in turn, causes damage to the cable insulation, resulting in the formation of electrical trees ¹³ from the inside of a cable growing outward. In other cases, damaged or missing concentric neutral leads to a concentration of electrical fields at the points of damage, which can result in electrical trees starting from the outside of the cable growing inward. Underground cable failures often result in prolonged outages since these cables are directly buried in the earth, it takes longer to locate and isolate the faults and then make the necessary repairs. The replacement of bare concentric neutral ("BCN") cable in the JCP&L distribution system with jacketed cable will improve reliability by reducing the frequency of underground cable faults.

JCP&L will replace selected portions of underground cable with jacketed cable in conduit. The jacketed cable to be installed in EnergizeNJ will be less susceptible to neutral deterioration and is expected to therefore reduce the frequency of underground cable faults. Installation of cable in conduit, rather than directly buried, also saves time in the repair process if a failure were to occur. In this case, the failed cable can be removed from the conduit and a new replacement cable pulled in its place. Also, fault indicators will be installed at every transformer location within the work scope to enable a troubleshooter to more easily locate an underground fault, which will accelerate the restoration of service following an outage.

This component project also addresses certain large residential developments with underground infrastructure. Underground residential development sections were selected for the project based on consideration of the number of potential customers affected, or the number of customers served. Within this component project, nine circuits will be addressed with the replacement of approximately forty-six underground line miles of cable. JCP&L also will replace selected portions of pre-1986 construction underground cable that contains a non-jacketed BCN with new jacketed cable in conduit. In addition to providing reliability benefits, this component project reduces the potential for stray voltage conditions for customers as the BCN cable deteriorates over time. Based on analysis of historical outage data, the benefits of similar projects have shown an estimated 60% improvement for outages caused by direct buried/underground residential development classified interruptions.

¹³ Electrical trees are one of the main degradation mechanisms in solid polymeric insulation leading to the failure of high voltage equipment. The growth of electrical trees can lead to irreversible insulation failure. *3D Characterization of Electrical Tree Structures* IEEE Transactions on Dielectrics and Electrical Insulation Vol. 26, No. 1; February 2019, which can be accessed at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8624220.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Planned investment by calendar year for this Underground ("UG") Cable Replacement Grid Modernization component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
UG Cable Replacement	\$ 3.40	\$10.20	\$ 3.40	\$ 6.80	\$ 3.40	\$ 3.40	\$ 30.61

GM Component: Selective Undergrounding

This component project will target overhead line sections to be placed underground to reduce distribution line and equipment exposure of such sections to most fault causes. The JCP&L distribution system, as with the electric utility industry in general, is predominantly an overhead system. With all overhead systems, overhead line construction (which is less expensive by orders of magnitude compared to undergrounding) has a higher level of exposure to most fault causes, especially in forested areas, where tree strikes pose a hazard to the distribution system. This project will benefit customers both during non-storm conditions as well as during storm events. This component project will address fourteen circuit segments and will relocate a total of seven miles of overhead distribution line underground. Locations selected for this project are double-circuited substation egresses or double circuit, three-phase overhead line sections.

Undergrounding these double circuits directly outside of, and in the immediate vicinity of, the substation will limit exposure to potential hazards and limit substation breaker operations affecting large number of customers. By focusing the selective undergrounding component projects on distribution overhead line sections that serve more than 18,000 customers, JCP&L will maximize benefits from these projects by reducing potential customer interruptions in most outage categories, particularly vehicle, tree and line/equipment related interruptions.

Benefit analysis for this component project is consistent with JCP&L's Undergrounding Study, previously filed with the BPU in response to recommendation TSI-EDC-7, in BPU Docket No. EO20090607, Order dated June 9, 2021, as summarized in Figure 18 below.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Undergrounding Outage Reduction Factors by Cause Cause Reduction Reduction Cause Animal 95% Other Utility-Non Elec 0% 100% Bird Overload 0% Call Error 0% Planned Outage 0% Contamination 95% Previous Lightning 95% Customer Equipment 0% Switching Error 0% 90% Equipment Failure Trees - Sec/Service 100% Fire 95% Trees Off ROW-Limb 100% Forced Outage 95% Trees Off ROW-Tree 100% Human Error - Company 0% Trees On ROW 100% Human Error -Non-Company 0% UG Dig-Up 0% Ice 100% Unknown 95% 95% Vandalism Lightning 0% Line Failure 90% Vehicle 95% 100% Wind Object Contact With Line 100% Other Electric Utility 0%

Figure 18: Undergrounding Outage Reduction Factors from TSI-EDC-7

Planned investment by calendar year in this Selective Undergrounding Grid Modernization component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Selective Undergrounding	\$ 0.87	\$ 0.87	\$ 0.87	\$ 0.87	\$ 0.87	\$ 0.87	\$ 5.20

Project 2: System Resiliency

The System Resiliency ("SR") project is designed to create a more resilient distribution system and reduce the length of customer outages. This SR project will increase operational flexibility for JCP&L by increasing communications (*i.e.*, SCADA) with line devices/equipment on the distribution system, increasing capacity for circuit ties and redundancy, and further building-out elements of the Distribution Circuit of the Future vision. This project also enables distribution automation capabilities and advances standardization of distribution system voltages across the JCP&L distribution system on an accelerated basis. The four proposed components in the SR project will upgrade portions of the distribution system to provide benefits to customers in both non-storm and storm conditions.

Specifically, the component projects of Voltage Standardization, New Distribution Sources, and Circuit Ties with SCADA (Loop Schemes) all have identified certain line segments, much like the Circuit of the Future component project, for capacity upgrades. Identified locations within this scope of work will benefit from additional circuit tie opportunities. Most notably, the Voltage Standardization component proposes to overcome the historical differences in operating voltages

JCP&L's EnergizeNJ Engineering Evaluation and Report

resulting from the acquisition and combination of several electric systems that now form JCP&L, as previously described in Section VI of this report. Voltage standardization is critical in the Circuit of the Future vision to enable compatibility and flexibility across the JCP&L system. Within the New Distribution Sources component project, existing circuits will be split by either adding an additional, new exit for a single circuit or a new distribution transformer and a new circuit exit at an existing substation.

As an ancillary benefit, the locations selected for work under the SR Project will add capacity for DER interconnection in areas where solar accommodation opportunities may be limited, and to support electrification. An example of this is illustrated in Figure 19 below.

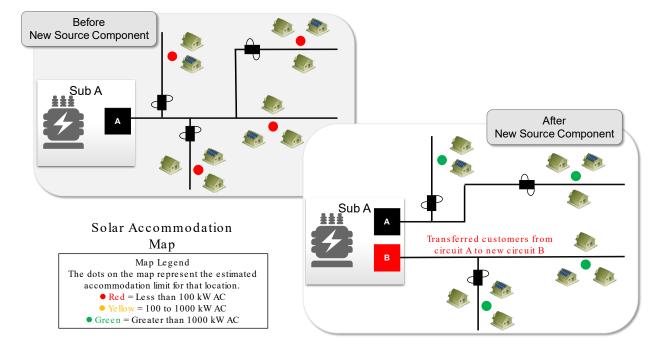


Figure 19: Illustration of Added Capacity via System Resiliency Projects

The two component projects within this SR project that further advance distribution automation by providing additional monitoring and greater visibility are Circuit Ties with SCADA (Loop Schemes) and Distribution Automation Enablement. The Distribution Automation Enablement component project is designed to provide remote real-time monitoring and control of key system devices (*i.e.*, reclosers, substation breakers and transformers), which will allow the Company's operations personnel to respond more rapidly to outages, reduce the duration and number of customers affected by an outage, and enhance the safety of workers. The projects within this category align with the ADMS capability of the Company's recently installed and implemented Network Management System ("NMS") (which, among other enhancements, replaced the Company's legacy outage management system known as "PowerOn") and are designed to enable

JCP&L's EnergizeNJ Engineering Evaluation and Report

greater automation of customer restoration without (or with reduced levels of) distribution system operator or fieldworker intervention in the future. These devices will be enabled with intelligent control over the distribution system and will enable more rapid fault location, isolation, and service restoration. In addition, cyber security is critical to the Company's distribution system and protection against cyber security risks will be integrated into this component project and other projects (as well as others within this Program proposal).

These technologies will provide the Company with increased flexibility and the potential for more integrated operations as well as greater grid visibility in support of increased circuits ties, DER and electrification. The customer benefit in this SR project is aimed at reducing the duration of customer service interruptions.

Per the benefit analysis described in Section VII, this project has an overall Benefit to Cost Ratio of 1.4.

		Non	l (\$ in mill	ions)	NPV (\$ in millions)						
Customer Benefit Project	Ве	nefits		Costs	Benefit/Cost Ratio		Benefits		Costs	Benefit/Cost Ratio	
System Resiliency	\$	2,254	\$	559	4.0	\$	620	\$	455	1.4	

In the following sections, each SR component project will be discussed in more detail.

SR Component: Distribution Voltage Standardization

Over 70% of JCP&L's distribution customers are served from 12.47kV circuits. The remaining distribution circuits have operating voltages of 4.16kV, 4.8kV or 19.9kV. This SR component project upgrades selected areas of the JCP&L distribution system currently operating at non-standard voltages such as 4.16kV wye or 4.8kV delta to operate at JCP&L's standard voltage of 12.47kV. Upgrades also include larger conductors to increase tie capability and additional sectionalizing devices installed to reduce outage size in the event of a fault. Other benefits from this project component include reduction in required inventory from voltage standardization, reduced line losses from larger conductor and increased capability to support greater DER penetration and electrification under the State's clean energy goals.

These 4kV distribution systems, constructed most often with lower ampacity copper conductor, were common at the time of the initial build-out of the distribution system until the early 1960s. The increased load associated with large scale development in the late 1950s, 1960s and early 1970s required higher operating voltages to meet the demand imposed upon such systems. As a result, a new standard operating voltage of 12.47kV was selected for all new distribution construction.

Although much of the distribution system operates at 12.47kV, areas of 4.16kV and 4.8kV delta remain. These 4kV distribution systems are not sufficient in the long-term to support DER expansion and electrification to achieve the State's clean energy goals and, it is neither practical nor prudent to make significant investment to increase capacity in these 4kV distribution systems

JCP&L's EnergizeNJ Engineering Evaluation and Report

without first converting them to the standard operating voltage. Simply put, without standardization of system voltages, there will always be a gap in system capacity, resiliency, and operational flexibility between the standard voltage circuits and the non-standard voltage circuits.

As part of the SR project in this Program, the Company will upgrade these 4kV, non-standard voltage circuits to allow for operation at 12.47kV. This will create new opportunities for circuit ties with adjacent circuits resulting in more rapid service restoration. Specifics within this work scope include the same distribution line construction standards that were identified in the Distribution Circuit of the Future component, which again is expected to yield a reduction in sustained customer interruptions. Additionally, this SR project component will include the upgrade of substation equipment such as power transformers and circuit breakers, based on a holistic review of the existing circuit, including both substation and line equipment, to ensure capability to transfer load during abnormal conditions.

The candidates for this component project are 4kV distribution voltage circuits and substations, that, when upgraded to 12.47kV, would present tie opportunities to adjacent circuits and substation sources. Within this component there are eighteen projects incorporating this 4kV distribution voltage standardization and copper conductor replacement that are surrounded by 12.47kV distribution voltage circuits. Figure 20 below serves as a visual example of one location selected for the Voltage Standardization component project work. By converting the Sea Bright 4kV, there will be more tie opportunities on the Barrier Island with neighboring 12kV circuits for customer restoration during sustained outages.

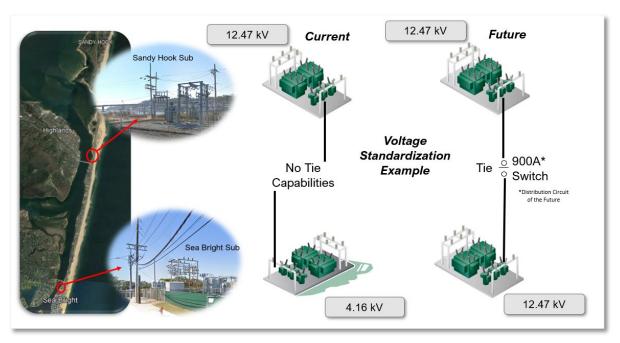


Figure 20: Voltage Standardization at Sea Bright Substation

JCP&L's EnergizeNJ Engineering Evaluation and Report

This SR component project yields tie opportunities that should prevent a sustained outage caused by a loss of supply or substation related incidents about 75% of the time. When a substation interrupting device operates, due to the added circuit tie, up to 50% of customers affected should be restored and further isolated from the outage. The Company estimates a benefit from upgrades to current distribution standards to offer an 80% reduction of specific outage causes. Note that the estimates of reliability improvements were prorated according to the percentage of the circuits where work is performed.

This SR component project is another step in the progression toward the Distribution Circuit of the Future vision across JCP&L because a standard operating voltage improves system resiliency; that is, the ability to recover and restore customers, in the event of an outage.

Planned investment by calendar year for this Distribution Voltage Standardization System Resiliency component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Distribution Voltage Standardization	\$33.55	\$67.53	\$67.53	\$ 67.53	\$33.98	\$33.98	\$304.09

SR Component: New Distribution Sources

This SR component project provides for installation and/or construction of new distribution substation equipment or sources to add capacity to support load growth, greater DER integration and electrification and to reduce circuit length in specific areas of the JCP&L system. This component project also addresses areas where back-up capacity presently is not available and remote circuits with capacity constraints. Component projects include the creation of new circuits or additional modular substation sources, including new distribution transformers. Customers served from longer circuits have greater exposure to outages. Reducing the length of the circuits, adding new sources and adding circuit ties would lessen this exposure. This SR component project: (i) addresses high impact areas of the JCP&L distribution system where there is limited opportunity or alternative to serve the load in the event of a single failure, and (ii) serves to reduce the risk of longer duration outages.

New sources will address areas where portions of the system are constrained by limited opportunities for circuit ties and load transfers. Adding new sources, creating new circuits and transferring customers from existing sources/circuits to these new sources/circuits will reduce outage exposure and improve reliability for these customers. Based on the location selection criteria outlined below, each selected component project location will include the work scope for the addition of a new circuit and additional work scopes may include the addition of a modular substation (including distribution transformer installation) and the addition of circuit ties to further reduce the duration of potential outages. Each selected location also includes evaluation of the overhead circuit based on the same criteria as the Distribution Circuit of the Future Grid Modernization component project; thereby including conductor upgrades that will support tie capability between distribution circuits, greater DER integration and electrification.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Figure 21: Typical Modular Substation

Specific locations were determined through planning and analysis, the use of historical reliability metrics and considering the availability of a spare circuit exit within an existing substation and/or availability of space for expansion within an existing substation perimeter. However, additional consideration was given to projects which would require the expansion of existing substations and/or the purchase of real estate for new modular substations. Thirteen distinct locations have been identified for these SR component projects, which incorporate 131 line-miles of construction upgrades.

For this SR component project, estimates were made of the customer outage reductions resulting from the introduction of new sources, reduced circuit length and circuit ties, as applicable. As this component project aligns with, and incorporates, elements of the Distribution Circuit of the Future, the benefits identified under the Circuit of the Future component are also applicable here; specifically, a 45% improvement is estimated in certain outage causes, including but not limited to, line and equipment failures, lightning and wind. This reduction in overall outage numbers is derived from engineering estimates based on results of similar programs across EDCs within FirstEnergy's footprint. This assumption has been applied to estimate reliability benefits for the specific line segments where work is planned and as indicated earlier, has been prorated based on the percentage of feeders where work will occur. Further, for locations where new circuit ties are added, it is estimated that a portion of customers interrupted will be able to be restored more quickly at most times (*i.e.*, 75% of the time) because of the availability of a new circuit tie to the new circuit.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Distribution Planned investment by calendar year for the New Distribution Sources SR component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
New Distribution Sources	\$ 6.96	\$ 40.16	\$ 23.86	\$ 25.88	\$ 23.58	\$ 19.78	\$ 140.22

SR Component: Automatic Circuit Ties with SCADA (Loop Schemes)

This SR component project focuses on upgrading identified line protective devices to improve visibility, control and, in some cases, add reclosing capability for SCADA enabled distribution reclosers. This component project builds on the predecessor Reliability Plus to expand distribution system resiliency and will continue to position the JCP&L distribution system for additional future grid modernization and automation consistent with the Distribution Circuit of the Future roadmap. With this SR component project, the Company will continue to construct recloser circuit ties with SCADA control for real-time system monitoring and remote-control switching capability to adjacent circuits with different substation sources.

As stated in the Section VI, Reliability Overview, the JCP&L footprint has installed 114 distribution 'loop' tie schemes, which represents approximately 10% of the Company's distribution circuits. Since the filing of the 2022 ASPR, two of those schemes have been disabled due to permanent load transfers, and fifteen additional tie schemes have had SCADA control added, bringing the totals to 112 automatic distribution tie schemes in place with ninety-six also having SCADA control as of the date of this Report. In some instances where circuit ties are already available on the JCP&L distribution system, customers could further benefit from reduced outage and shorter duration outages by improving operator visibility and control of field devices. Additionally, limited circuit capacity due to smaller conductor, limits the amount of load that may be transferred using a circuit tie and limits opportunities to restore customers during an outage.

Under this SR project component, the proposed circuit ties will be created with the installation of a mid-point SCADA recloser on each circuit along with a normally open tie SCADA recloser.

The SCADA control that will be installed at the circuit recloser locations will have the ability to open and close reclosers to connect and disconnect certain portions of the distribution system as real-time operating conditions warrant. Additional work such as line upgrades will increase the load transfer capabilities of these circuits. To accommodate the associated increase in load, some portions of the impacted circuits will need to be upgraded to 800-amp conductor. This SR component project will continue to position the JCP&L distribution system for additional future grid modernization and automation consistent with the Distribution Circuit of the Future vision.

These new circuit ties, as depicted in Figure 22 below, will be designed to allow for the remote transfer of customers experiencing an outage to an adjacent circuit to quickly restore service.

JCP&L's EnergizeNJ Engineering Evaluation and Report

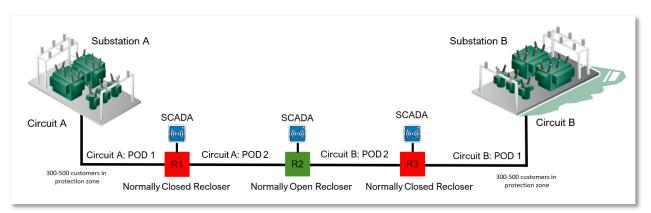


Figure 22: Loop Scheme Recloser Diagram

Candidate circuits under this SR project component were selected from circuits based on the HPC criteria and those that have a tie point to an adjacent circuit. Additionally, engineers identified circuits where compatible reclosers were previously installed, which increases the cost-effectiveness on these circuits of upgrading from a stand-alone recloser installation to a full loop scheme. Seventy-one automatic circuit ties with SCADA will be added with this SR component project proposal. Additionally, as part of the scope of this work, and in order to realize the full benefits as explored above, approximately one hundred and nine overhead line-miles have been identified for capacity upgrades. Twenty-seven of these installations are also proposed for the Distribution Automation ("DA") Enablement project component, which will yield additional resiliency benefits.

This SR component project will provide service restoration benefits to customers experiencing distribution outages, as well as some substation and sub-transmission system caused outages.

With the addition of PODs on the identified circuits, the extent of the sustained customer impact is expected to be reduced by 50% with a concomitant reduction in outage duration. Customers will also experience benefits from the new construction of identified line sections by applying the core infrastructure foundations of the Distribution Circuit of the Future model to these and future upgrades to JCP&L's distribution system. More specifically, a 45% improvement is estimated in certain outage causes, including but not limited to line and equipment failures, lightning and wind. This reduction in overall outage numbers is derived from engineering estimates based on results of similar programs across EDCs within FirstEnergy's footprint. This assumption has been applied to estimate reliability benefits for the specific line segments where work is planned and has been prorated based on the percentage of feeders where work is occurring.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Planned investment by calendar year for this Automatic Circuit Ties with SCADA (Loop Schemes) SR component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total	
Automatic Circuit Ties (Loop Schemes)	\$ 16.70	\$ 19.02	\$ 10.85	\$ 16.27	\$ 10.85	\$ 9.76	\$ 83.44	

SR Component: Distribution Automation Enablement ("DA Enablement")

This SR component program proposes a data upgrade for the substation busses that are connected to most loop scheme locations¹⁴ as outlined in the Automatic Circuit Ties with SCADA (Loop Scheme) SR component project discussed above. These upgrades will be in the form of SCADA and telemetering enhancements that provide DCC operator visibility that was not previously available. Each circuit will have operational control as well as volt/var visibility. Additionally, substation load tap changer ("LTC") and transformer readings and control will provide useful information such as voltage step, loading and temperature values. Finally, DA Enablement will allow the current distribution infrastructure to accept emerging technologies consistent with the Distribution Circuit of the Future roadmap.

To reach a state of real-time decision-making, JCP&L's DCC operators require indicators and control for most of the distribution network. However, there are distribution system locations where such indicators and control are not available. Additionally, there is very little and limited information available in an automated form regarding volt/var flow as well as substation equipment status such as voltage step and transformer loading.

The Automatic Circuit Ties with SCADA (Loop Scheme) SR component projects discussed earlier provide an opportunity to access, assess and, where advantageous, address each circuit and substation equipment electrically associated with the loop scheme installation as a candidate for the proposed DA Enablement enhancement or upgrade, which would make available indicators and controls to DCC Operators on each feeder to provide breaker current per phase, voltage per phase, and Var flow. Also, with these DA enablement upgrade/enhancements, the substation transformer would provide data from the LTC on a real-time basis as well as enable remote control. This will allow the DCC operators visibility upon which to act appropriately to avoid possible voltage problems for customers. Each substation would also be a candidate for a new Remote Terminal Unit ("RTU") as outlined in the RTU Replacement component of the Substation Modernization Project discussed below.

The visibility, control and system integration outlined in this solution will be accomplished by the installation of a Schweitzer Engineering Laboratories ("SEL") device as required on associated line and substation devices. JCP&L will install the latest model of SEL protective relays which meet Company standards on communication and security for integration within the existing secure

¹⁴ The DA Enablement component project proposes a data upgrade for the substation busses that are connected to any fifty-nine loop scheme locations which were identified in the initial EnergizeNJ filing. In the amended EnergizeNJ filing, 12 additional loop scheme component project locations were added; however, corresponding DA Enablement projects were not considered as part of the HPC Phase II Plan.

JCP&L's EnergizeNJ Engineering Evaluation and Report

SCADA network and NMS. Replacing electromechanical with SEL relays within the substation (transformer and circuit communication) will result in advanced communication and visibility on this equipment to the DCC operator. The level of visibility provided with this technology at the transformer level includes real and reactive power, voltage, LTC position, megavolt amperes and amps per phase. Similarly, at the substation circuit device level, real and reactive power as well as amps per phase will be measured and communicated through the system. Figure 23 serves as a visual of the level of detailed telemetry available to the DCC Operator and the distribution planning engineers before (left) and after (right) the execution of this proposed work scope in concert with the execution of the RTU Replacement component projects.

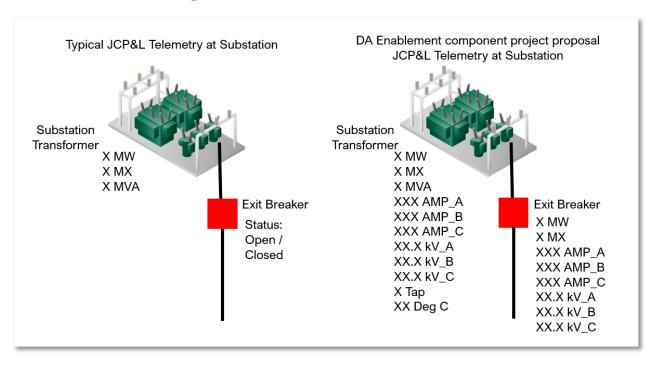


Figure 23: Distribution Automation Enablement Overview

The selection criteria for this SR component project are similar to the criteria used for the Automatic Circuit Ties with SCADA (Loop Scheme) SR component project discussed above. This approach is to prepare these selected circuits to become fully automated. This work will immediately offer to significantly reduce the duration of customers outages. Again, this approach is also consistent with the underlying principles of the Distribution Circuit of the Future vision discussed earlier herein. Based on the selection criteria there will be twenty-nine substations where this component project will take place.

In JCP&L's reliability benefit analysis, distribution outages considered for offset opportunities were those that had a duration extending beyond 120 minutes. In these cases, it is estimated that there was opportunity for the DCC operator to analyze the system with real time data and make better-informed switching and restoration decisions. For these cases, it is assumed that outages

JCP&L's EnergizeNJ Engineering Evaluation and Report

will be shortened by twenty minutes as a result of the DCC operator having full control of the switching devices, which is preferred to rerouting field resources.

The main qualitative benefit of this work arises from its contribution to the overall drive toward the pinnacle building block (Integrated Grid Operations) of the Distribution Circuit of the Future pyramid displayed earlier in this Report. While full integrated grid operations may not be an immediate result of this SR component project, as discussed, immediate benefits will be observed, and this SR component will continue to set the stage for future vision-consistent technology applications for the JCP&L distribution system.

Planned investment by calendar year for this DA Enablement SR component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Distribution Automation Enablement	\$ 8.09	\$10.51	\$ 4.85	\$ 3.23	\$ 4.04	\$ 0.81	\$ 31.53

Project 3: Substation Modernization ("SM")

The Substation Modernization project is comprised of five component projects, which will provide accelerated modernization to many of the Company's electric distribution substations and substation equipment that takes advantage of other projects occurring within the ambit of this Program. The SM Project is also consistent with the principles of the Distribution Circuit of the Future vision. While the Distribution Circuit of the Future vision implies a heavy focus on the overhead distribution system, the substation sources and equipment serving these Circuits of the Future are also key enabling components for this vision to be realized as a whole. Overhead lines host most of the outage exposure on the distribution system, simply based on the total number of line miles across the Company's footprint. However, it is critical to also focus on substation infrastructure as part of this reliability focused investment program, because a single substation outage generally poses a higher risk from a customer impact perspective.

Within the SM project, three component projects are focused on substation equipment from an infrastructure perspective and two, in particular, are focused on interrupting devices - the Replacement of Coastal Substation Switchgear, and the Oil Circuit Breaker Replacement component projects. These SM component projects are focused on improving the safety and reliability of the primary interrupting and reclosing devices at the selected substations, such that all selected locations will align with the 800 – 1200A minimum capacity range modeled in the Distribution Circuit of the Future. The Mobile Substation SM component project also has an infrastructure focus, since the purchase of newer and more operationally flexible mobile substations will support, not only customer restoration, but also system upgrades within this Program and within the Company's base capital investment plans.

The Distribution Circuit of the Future vision also requires reliable and secure communication systems. In order to have sufficient, state-of-the-art communications capability in place and

JCP&L's EnergizeNJ Engineering Evaluation and Report

compatible with advancing technologies, upgraded equipment is also required at the substation. This is the case especially for two key types of equipment: (i) protective relays with advanced metering and monitoring capabilities, and (ii) RTUs, which are the primary communication devices at the substation.

Referring to Figure 9 (page 15 of this Report), component projects within the Substation Modernization project, which enable the second through fourth building blocks of the Distribution Circuit of the Future (*i.e.*, Security/Communication; Automation, Control and Monitoring; Analytics/Modeling), also include the RTU Replacement and the Modernize Protective Equipment project components. Advanced monitoring of substation equipment will provide support for better planning and modeling data for use by the Company's engineering team to enable more informed analysis and evaluation of available capacity for DER interconnections.

The SM component projects outlined here focus on: i) advancing the technology and equipment within JCP&L's distribution substations with the benefit of providing greater visibility and control for the Distribution System Operator; ii) upgrading equipment to better withstand coastal environmental factors; and iii) accelerating installation of protective equipment required for the continued increase in DER penetration and electrification within the JCP&L territory.

Per the benefit analysis described in Section VII, this project has an overall Benefit to Cost Ratio of 1.1.

	Nominal (\$ in millions)					NPV (\$ in millions)					
Customer Benefit Project	Ber	nefits	Costs		Benefit/Cost Ratio	Benefits		Costs		Benefit/Cost Ratio	
Substation Modernization	\$	298	\$	100	3.0	\$	91	\$	80	1.1	

In the following sections, each SM component project will be discussed in more detail.

SM Component: Replace Coastal Substation Switchgear

JCP&L has a large population of Distribution Metal Clad Switchgear ("switchgear") located throughout the service territory. The simple and concise form factor to which this switchgear is designed, proved useful to construct substation infrastructure within limited spaces or real estate. These enclosures house an insulated bus in the bus duct and switchgear breaker cubicles usually consisting of several rackable air or vacuum circuit breakers. The enclosures also serve as protection against the elements as well as to improve aesthetics. This SM component project proposes to prioritize the upgrade of eight distribution switchgear units for twenty distribution circuits, mostly found in coastal areas and upgrade them with new switchgear units, including the underground cable from the point of origin within the substation circuit cubicles to the point of connection with the overhead distribution system. Switchgear locations were selected based on historical corrective maintenance records where the orders specifically recorded moisture damage or water intrusion.

JCP&L's EnergizeNJ Engineering Evaluation and Report

These switchgear units have been maintained over time to prevent damage from environmental factors as well as normal wear and tear; however, recently there has been an uptick in the required corrective maintenance due to enclosure degradation. Despite efforts to maintain and extend the useful life of this equipment, the proximity to the coastal environment of moist, salt air accelerates the degradation of the switchgear and associated metallic structures. The bus duct assemblies that connect the low voltage side of distribution transformers to the switchgear are also deteriorating at an accelerated rate. The intrusion of water into the bus duct and cubicles can lead to flashovers within the enclosure. These faults can cause permanent damage or may even destroy breakers, current transformers, control devices, and conductors. Further, any fault that occurs within the bus duct or switchgear exposes the transformer to a high fault current that can shorten transformer life or even lead to subsequent transformer failure.

Over the past few years, these switchgear units have failed at a higher rate and the Company's review of historical corrective maintenance data has resulted in engineering estimates that predict one piece of switchgear equipment will fail approximately every five years. Figure 24 depicts a piece of switchgear equipment identified for replacement through this SM component project.

Figure 24: Ocean Beach Substation Switchgear

Upgrading the switchgear units as proposed in this SM component project will reduce outages for over 23,000 customers and will prevent possible prolonged outages due to switchgear failure. The time required to restore service to customers from switchgear failure or flashover is anticipated to be greater than three hours and may require the use of a mobile substation to restore all customers. An additional safety benefit of this SM component project is the inclusion of state-of-the-art safety mechanisms incorporated in the upgraded switchgear, which are designed to prevent arcing and increase employee safety when racking these devices into or out of position. An example of the results of such an arcing event is shown in Figure 25 below. This safety benefit serves as another engineering control to reduce employee exposure to potential hazards while completing their work.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Figure 25: Monmouth Substation arcing event

The benefit analysis for this SM component project is demonstrated in outage avoidance under both non-storm and storm operations. As such, historical data used in this analysis included a review of all outage data, specifically including the two recent severe weather events, Riley and Quinn and Tropical Storm Isaias. Unlike with other SM component projects, these severe events were included in the reliability benefit analysis because one of the main drivers for failure is water intrusion; the amount of rainfall is a major factor in these events.

These switchgear upgrade SM component projects will follow the Distribution Circuit of the Future model regarding minimum capacity of 800 - 1200A for substation interrupting devices. The work will also incorporate DA Enablement criteria for protective relaying upgrades where required for greater visibility and control to a DCC Operator, which is also consistent with the Distribution Circuit of the Future vision.

Planned investment by calendar year for this Replace Coastal Substation Switchgear SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Replacement of Coastal Switchgear	\$ -	\$ 2.37	\$ 4.75	\$ 4.75	\$ 4.75	\$ 2.37	\$ 19.00

JCP&L's EnergizeNJ Engineering Evaluation and Report

SM Component: Oil Circuit Breaker (OCB) Replacements

The Company currently has over eighty distribution oil circuit breakers ("OCBs") in service throughout the service territory. This SM component project targets forty-seven OCBs for upgrades, with prioritization given to OCBs on circuits with higher customer counts. Selected circuit breakers will be upgraded from oil—insulated to vacuum or magnetically actuating circuit breakers, or distribution style reclosers as substation protective devices. These breaker upgrades will include the upgrade of the associated disconnect switches or the installation of disconnect switches where none are currently installed.

JCP&L has utilized OCBs for over five decades, and while the majority of in-service circuit breakers are not OCBs, the OCBs are less capable breakers than state-of-the-art breakers available today. Based on historical incidents and corrective maintenance history, engineering estimates predict that all in-service OCBs will fail within the next thirty years. Breaker failures result in extended customer outages of 140 minutes or more, and potentially impacting all customers served from the circuit associated with the failed breaker. Over the useful life of these OCBs, there has been an increase in distribution system load and, correspondingly, an increase in the amount of available fault current, which increases the potential for the breaker to fail when it operates. These OCBs are more difficult to maintain due to the limited supply of spare parts and could potentially pose significant environmental and safety risks associated in the event of a leak or failure of the breaker. OCBs by their nature tend to fail more catastrophically than is the case for other breaker types. Such catastrophic failures pose environmental risk and safety risk to employees working on or around the breaker.

This SM component project will result in a more reliable distribution breaker system as an upgrade to modern equipment will provide enhanced performance. Newer breaker technology eliminates the environmental impacts from leak and failures associated with OCBs and state-of-the-art equipment and technology upgrades made programmatically will avoid more expensive emergency service breaker repairs and replacements.

This SM component project provides benefits in the form of outage avoidance. These upgrades will avoid sustained outages of approximately 140 minutes to potentially 60,000 customers. All breaker upgrades will follow the DA enablement criteria affording less time to clear faults (*i.e.*, quicker restoration) as well as improved data and visibility to the DCC operators when an outage occurs, which is consistent with the Distribution Circuit of the Future vision.

Planned investment by calendar year for this OCB Replacements SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Substation Equipment Replacement	\$ -	\$ 3.39	\$ 2.82	\$ 2.82	\$ 2.82	\$ 1.41	\$ 13.26

JCP&L's EnergizeNJ Engineering Evaluation and Report

SM Component: Modernize Protective Equipment

This component project will modernize substation protective equipment ABB¹⁵ Distribution Protection Unit ("DPU") relays, and Electromechanical Underfrequency Load Shedding ("UFLS") relays type MDF and SFF¹⁶. There are currently fifty-three ABB DPU relays in service, which are first-generation microprocessor-based relays and have limited event reporting and analytic capabilities. Further, operational issues have been reported throughout the utility industry respecting the DPU model relays. These issues have manifested during testing or have been observed during local display failures. For DPU relays, engineering estimates predict that one unit per year will likely fail, resulting in outages of 120 minutes or more to approximately 98,000 customers on circuits protected by a DPU relays. These first-generation microprocessor-based relays have limited event reporting and analysis capabilities.

Similarly, engineering estimates predict that approximately all fifty-six UFLS relays will fail within the next thirty years. UFLS failures are likely to result in customer outages of 240 minutes or more to approximately 227,000 customers on circuits protected by a UFLS relays. Electromechanical UFLS relays are no longer supported by the manufacturers, similar to the DPUs, have no event reporting and analytic capabilities. There are currently thirty-one MDF and twenty-five SFF under-frequency relays in service that are also candidates for upgrades.

Upgrading all the remaining ABB DPU/UFLS relays with state-of-the-art SEL relays will avoid potential outages related to DPU/UFLS relays, should they malfunction or fail. Both the DPU and UFLS relay upgrades will follow the DA Enablement criteria, which is consistent with the Distribution Circuit of the Future vision. Therefore, these upgrades will allow for more advanced telemetry communication with the NMS and will serve as a first step in enabling future integration with advanced grid operations. As with the DA Enablement component project, this improved functionality will provide to the DCC operator greater ability to perform fault analysis and greater visibility of distribution system conditions to limit and or reduce customer outages and outage duration.

Planned investment by calendar year for this Modernize Protective Equipment SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Modernize Protective Equipment	\$ 3.30	\$ 4.85	\$ 2.33	\$ 4.65	\$ 4.65	\$ 1.36	\$ 21.14

SM Component: Remote Terminal Unit (RTU) Replacements

In this SM component project, JCP&L has identified key substations for RTU replacement. These older style communication terminals have too many limitations to allow for the increased amount

¹⁵ Referring to the ABB Ltd., which is a manufacturing company of electric transmission and distribution equipment, including protective relays.

¹⁶ MDF and SFF are two types of frequency-based relays. These relays are intended to sense hazardous underfrequency (or overfrequency) conditions and initiate selective load shedding to preserve system stability.

JCP&L's EnergizeNJ Engineering Evaluation and Report

of real-time data needed for proper decision making by a DCC operator consistent with the principles inherent in the Distribution Circuit of the Future vision.

With the improvements available from state-of-the-art distribution system technology, there is an opportunity to place much more real-time information at the fingertips of the DCC operators. Further, with the deployment of ADMS, the data requirements of these systems outstrip the capabilities of the existing field-deployed RTUs. Reliance on wired communications (*i.e.*, telephone lines) and the use of arcane communication protocols (*i.e.*, RS-232) make it necessary to modernize communications with field devices to accommodate the data requirements for real-time distribution management systems, such as ADMS and other component projects such as those included in the DA Enablement component project.

Under this SM component project, seventy-six substations have been identified for enhanced reliability through real-time monitoring. This work will improve visibility of system conditions for DCC operators as described in the DA Enablement component project. Similar to the Grid Modernization and System Resiliency projects discussed above and their respective component projects, this SM component project can be considered as an upgrade and expansion of data communications capability from the substation to the NMS.

Upgrading the communications and communication interfaces will provide the bandwidth necessary to accommodate real-time data transfer of important telemetered data to JCP&L operating systems, including enabling and providing the necessary communications capability and capacity for future integration with the advanced applications of the ADMS. Upgrading to a cellular-based interface where possible means that the RTUs will no longer depend on a wired communication interface, which is typically less reliable than a cellular interface.

The FirstEnergy communications team was asked to provide a list of JCP&L substation locations, which would benefit from accelerated RTU upgrades. In addition, any locations that will be affected by, or involved with, the DA Enablement component project are eligible for inclusion within this work scope, and in fact, the upgrades of these RTUs are required to achieve the full benefits of DA Enablement. For an illustration of the improvements to available real-time operational data from this SM component project, it may be helpful to refer to Figure 23 on page 42 for the pre- and post- implementation data points available to the DCC operator.

This SM component project will yield a benefit of CMI reduction. Engineering estimates predict that extended outages may be reduced by sixty minutes due to increased visibility of system conditions for DCC operators, facilitating more rapid service restoration. With both the RTU Replacement SM component project and the DA Enablement SR component project in place, the duration of outages will be reduced for affected customers in locations on the JCP&L distribution system benefiting from these component projects using automated circuit ties.

Completion of this SM component project is also intertwined with the Automatic Loop Scheme SR component project and adds to the layered approach taken throughout this Program to ensure

JCP&L's EnergizeNJ Engineering Evaluation and Report

consistency with the Circuit of the Future vision. Taken as separate components, the Loop Scheme, DA Enablement and RTU Replacement component projects can each add value and have clear benefits to the customers, but when executed together as part of the Circuit of the Future vision and as part of this Program, these component projects have a synergistic impact that is critical to prepare JCP&L's distribution system overall for the top tier Circuit of the Future building block (Integrated Grid Operations).

Planned investment by calendar year for this RTU Replacement SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
RTU Upgrades	\$ 4.60	\$ 9.21	\$ 6.90	\$ 6.90	\$ 3.68	\$ 3.68	\$ 34.99

SM Component: Mobile Substations

This SM component project supports the purchase of four new mobile substations. Within the Company's fleet of mobile substations, existing units were manufactured between 1958 and 2020, with an average age of thirty-seven years. JCP&L is looking to begin to retire some of the older less reliable mobile units, not necessarily and exclusively due to their age, but primarily due to increasing maintenance challenges such as obsolete or difficult-to-replace parts. Mobile units by nature are more susceptible to wear and tear than typical substation equipment that isn't transported. The replacement of these units will require a commissioning program of new mobiles prior to retiring the degraded units.

The new mobile substations will have a high-side operating voltage of 34.5kV and a low-side operating voltage of either 12.47kV or 4kV. Once purchased and delivered, these mobile substations will be immediately available for service and placed into the existing fleet of twelve mobile substations. The new mobile substations, along with other existing mobile substations, will be located in New Jersey and stored in secure facilities throughout the territory and will be used, among other things, to support the execution of other Program component projects. A reliable fleet of mobiles substations, with varying voltage configurations, is essential to support emergency restoration activities consistent with the Company's emergency restoration plan, facilitate planned maintenance activities, attend to corrective maintenance, support service restoration from substation equipment failure and support planned capital improvement projects throughout the Company's service territory.

With the theme of distribution system modernization within this Program, JCP&L's mobile fleet should be expanded to support both planned and emergency scenarios. Accessible mobile substations are a key tenet to the emergency restoration plan in the event of a significant substation equipment failure; one such case is shown in the photograph below, Figure 26, where a mobile substation was installed after the failure of a substation transformer to restore service to customers. Additionally, as much of the Program is focused on substation and distribution system improvements, to facilitate such work both within this Program and within the Company's base capital plan, mobile substations will be required in many cases to support completion of these

JCP&L's EnergizeNJ Engineering Evaluation and Report

EnergizeNJ projects, reduce outage exposure and to address loading constraints while work is ongoing.

Figure 26: Recent Emergency Mobile Substation Installation

A fleet of mobile substations also enables JCP&L to maximize the useful life of substation transformers and other major substation equipment. JCP&L's rigorous maintenance programs are designed to sustain these long-lived assets. To prevent extended outages at or near end of life for this equipment JCP&L has documented mobile installation plans and pre-made cables ready to be used to connect the mobile substations to its existing substations. As such, when there is an equipment failure at a substation, a mobile substation can be deployed to restore service, usually within 24 hours.

JCP&L's EnergizeNJ Engineering Evaluation and Report

Planned investment by calendar year for the Mobile Substations SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Mobile Substations	\$ -	\$ -	\$ 2.90	\$ 2.90	\$ 2.90	\$ 2.90	\$ 11.60

IX. Conclusion

The Company's proactive (and vision-driven) strategy outlined within this Program proposal is required to close the anticipated comparative reliability performance gap expected due to the BPU's regulation changes as previously outlined in this Report. In addition, the varying impacts storm events in New Jersey have on the Company's recent reliability performance and in anticipation of near-term impacts from changes in reliability measurement, as well as increased electrification of the transportation sector, and increasing and more sophisticated demands from customers for reliable service, reinforces the Company's view that an immediate large-scale accelerated investment program is needed to enhance the ability and the capability of the JCP&L distribution system to meet such challenges and demands through design and construction projects that not only address current near-term challenges but which also catapult the Company forward in actualizing its long-term, Distribution Circuit of the Future vision. The three main projects comprised of their fourteen component projects in EnergizeNJ are designed not only to reduce the number and duration of sustained outages, and the number of customers impacted by normal and severe storm events, but also to better position the JCP&L distribution system to jumpstart the giant leap into a long-term commitment and focus on modernizing its distribution system through a consistent, dynamic and innovative vision (i.e., Distribution Circuit of the Future) that is conceived to address the long-term needs, which electric distribution systems are predicted to face.

In sum, EnergizeNJ proposes projects comprised of essential and integrated components intended to enhance the ability of the Company to deliver safe, adequate and proper service in the ordinary course, but also to enhance its ability to deal with outages and other contingencies more quickly and with better information, analysis and decision-making. Among other things, the integrated package of proposed projects will also facilitate the development and installation of future smart grid technologies. Indeed, in the process of delivering on its objectives, EnergizeNJ will also bring economic benefits to New Jersey, including job growth. Among these economic benefits are efficiency cost savings to JCP&L customers by more proactively and more efficiently (enabled by technology deployed in furtherance of the Distribution Circuit of the Future vision) performing the work necessary to address emergencies as well as storm and non-storm days through a portfolio of projects that have a positive benefit cost ratio that is estimated to generate over \$900 million in storm and reliability benefits to customers.

This plan will accelerate the improvement of JCP&L's reliability performance to improve customer satisfaction, and better align with advancing distribution system technologies, and statewide electrification goals, building our way toward the Distribution Circuit of the Future. These

JCP&L's EnergizeNJ Engineering Evaluation and Report

projects are designed to work together to drive overall incremental performance improvement across the JCP&L distribution system.

Finally, EnergizeNJ continues to build on the progress made in the Reliability Plus program, by continuing to accelerate its investment in projects that upgrade, harden and increase the flexibility of its distribution system, which will enable JCP&L to provide customers and communities with enhanced service which is safer, more reliable, and resilient and which provides substantial and quantifiable benefits to customers in pursuit of a comprehensive Circuit of the Future vision that will provide a roadmap for ongoing regular and special investment.

JCP&L's EnergizeNJ Engineering Evaluation and Report

ATTACHMENT 1

Northern Region Description

The Northern Region, headquartered in Morristown, New Jersey, includes all or portions of the counties of Essex, Hunterdon, Mercer, Morris, Passaic, Somerset, Sussex, Union, and Warren. The Northern Region extends south from Montague and follows along the eastern bank of the Delaware River to Washington's Crossing, northeast to Somerset, east to Millburn, north to Ringwood, west to the Sussex County border, then north to Vernon and back to Montague. JCP&L customers located in the Northern Region are served by six operating districts. (*See* Figure 1). The districts are located in Boonton, Dover, Flemington, Newton, Summit, and Washington. The Northern Region features a wide variety of contrasts. There are some portions that are densely populated and others that are sparsely populated. The region serves as national or international headquarters for many large corporations. In addition, many corporations have located major research and development, manufacturing, operating, or data center facilities in this region. Other major customers within this territory include other utilities, universities, transportation entities, major medical centers, etc. During 2022, several major customers continued major expansion projects. Approximately 2,300 critical facilities are located in the Northern Region, including nearly thirty hospitals.

Central Region Description

The Central Region, currently headquartered in Holmdel, New Jersey, includes all or portions of the counties of Burlington, Mercer, Middlesex, Monmouth, and Ocean. The Central Region follows the Raritan River from Sayreville to the Atlantic coast and covers the coast south to Barnegat, inland and west to Wrightstown, north to Hightstown and northeast back to Sayreville. JCP&L customers located in the Central Region are served by eight operating districts. (See Figure 1). The districts are located in Union Beach, Cookstown, Freehold, Lakewood, Long Branch, Old Bridge, Point Pleasant, and Berkeley. The Central Region features a wide variety of demographic and geographic contrasts. The western portion of the territory has farmland communities, while the eastern portion is home to Jersey Shore communities, including two urban cities, Asbury Park and Long Branch. Major redevelopment projects continue in Asbury Park, Long Branch and the rebuilding of the homes and businesses on the barrier island, directly or indirectly as a result of the impacts of Super Storm Sandy. The Central Region serves as headquarters for several large corporations and major military complexes (Joint Base MDL, US Navy Earle). Other major customers include other utilities, transit authorities, colleges and universities, large medical centers, major residential retirement and assisted living communities, large shopping malls, two racetracks, amusement parks, and a minor league baseball stadium. During 2022, JCP&L continued to work with the Fort Monmouth Economic Redevelopment Authority to add a new substation and improve the distribution grid at a former military base. Several large projects, including residences and commercial space, have begun development on the base. Approximately 2,200 critical facilities are located in the Central Region, including nearly twenty hospitals.

A FirstEnergy Com	journy	FUSE REPLAC	EMENT WITH TRIPS	AVER II 2024		
Location Count	LOCATION (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1	TRIPSAVER ON 189026A7545	WASHINGTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
2	TRIPSAVER ON 191818A8164	PAHAQUARRY TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
3	TRIPSAVER ON 208538A5767	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
4	TRIPSAVER ON 216626A5399	SHREWSBURY TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
5	TRIPSAVER ON 216945A4252) TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
6	TRIPSAVER ON 217859-50748	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
7	TRIPSAVER ON BT1002PPB	POINT PLEASANT BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
8	TRIPSAVER ON BT10056HD	HARDING TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
9	TRIPSAVER ON BT1010BBT10	BRANCHBURG TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
10	TRIPSAVER ON BT10179M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
11	TRIPSAVER ON BT1028MM	MENDHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
12	TRIPSAVER ON BT10294M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
13	TRIPSAVER ON BT1029ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
14	TRIPSAVER ON BT1033B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024

A FirstEnergy Com Location Count		I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
15	TRIPSAVER ON POLE	BT1042PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
16	TRIPSAVER ON POLE	BT1049LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
17	TRIPSAVER ON POLE	BT1052BY	BYRAM TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
18	TRIPSAVER ON POLE	BT1068BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
19	TRIPSAVER ON POLE	BT1082BT	BOONTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
20	TRIPSAVER ON POLE	BT1113HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
21	TRIPSAVER ON POLE	BT111AB	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
22	TRIPSAVER ON POLE	BT1123HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
23	TRIPSAVER ON POLE	BT1129PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
24	TRIPSAVER ON POLE	BT1138B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
25	TRIPSAVER ON POLE	BT113BBT	BRANCHBURG TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
26	TRIPSAVER ON POLE	BT1142BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
27	TRIPSAVER ON POLE	BT1149WN	WARREN TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
28	TRIPSAVER ON POLE	BT1164EBW	EAST BRUNSWICK TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
29	TRIPSAVER ON POLE	BT1165EBW	EAST BRUNSWICK TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
30	TRIPSAVER ON POLE	BT118AB	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
31	TRIPSAVER ON POLE	BT1202BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
32	TRIPSAVER ON POLE	BT1219B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
33	TRIPSAVER ON POLE	BT1233HMLTC	HOLMDEL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
34	TRIPSAVER ON POLE	BT1241NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
35	TRIPSAVER ON POLE	BT124OGA0014B	OCEAN GATE BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
36	TRIPSAVER ON POLE	BT125B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
37	TRIPSAVER ON POLE	BT1262OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
38	TRIPSAVER ON POLE	BT1272BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
39	TRIPSAVER ON POLE	BT1277MTEA	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
40	TRIPSAVER ON POLE	BT1287HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
41	TRIPSAVER ON POLE	BT1289MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
42	TRIPSAVER ON POLE	BT1297HO	HOPATCONG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
43	TRIPSAVER ON POLE	BT1306HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
44	TRIPSAVER ON POLE	BT1307BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
45	TRIPSAVER ON POLE	BT1308HML	HOLMDEL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
46	TRIPSAVER ON POLE	BT1310DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
47	TRIPSAVER ON POLE	BT1338LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
48	TRIPSAVER ON POLE	BT1391ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
49	TRIPSAVER ON POLE	BT139EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
50	TRIPSAVER ON POLE	BT1464JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
51	TRIPSAVER ON POLE	BT1465HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
52	TRIPSAVER ON POLE	BT1505EBW	EAST BRUNSWICK TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
53	TRIPSAVER ON POLE	BT1542WN	WARREN TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
54	TRIPSAVER ON POLE	BT1549LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
55	TRIPSAVER ON POLE	BT1592MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
56	TRIPSAVER ON POLE	BT1603WN	WARREN TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
57	TRIPSAVER ON POLE	BT1607BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
58	TRIPSAVER ON POLE	BT1624HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
59	TRIPSAVER ON POLE	BT1633BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024

A FirstEnergy Com Location Count		I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
60	TRIPSAVER ON POLE	BT1645J	JEFFERSON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
61	TRIPSAVER ON POLE	BT1673OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
62	TRIPSAVER ON POLE	BT1714BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
63	TRIPSAVER ON POLE	BT1722LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
64	TRIPSAVER ON POLE	BT1734ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
65	TRIPSAVER ON POLE	BT1766CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
66	TRIPSAVER ON POLE	BT1779MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
67	TRIPSAVER ON POLE	BT1795NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
68	TRIPSAVER ON POLE	BT1797B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
69	TRIPSAVER ON POLE	BT180GR	GREEN TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
70	TRIPSAVER ON POLE	BT1827CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
71	TRIPSAVER ON POLE	BT1832MNT	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
72	TRIPSAVER ON POLE	BT1837LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
73	TRIPSAVER ON POLE	BT1850WY	WAYNE TOWNSHIP (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
74	TRIPSAVER ON POLE	BT1865MX	MANSFIELD TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024

A FirstEnergy Com Location Count		N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
75	TRIPSAVER ON POLE	BT1866MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
76	TRIPSAVER ON POLE	BT1868MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
77	TRIPSAVER ON POLE	BT1889B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
78	TRIPSAVER ON POLE	BT1889HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
79	TRIPSAVER ON POLE	BT188SLH	SPRING LAKE HGT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
80	TRIPSAVER ON POLE	BT1948BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
81	TRIPSAVER ON POLE	BT1964HML	HOLMDEL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
82	TRIPSAVER ON POLE	BT196DVT0012	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
83	TRIPSAVER ON POLE	BT199SLH	SPRING LAKE HGT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
84	TRIPSAVER ON POLE	BT19BGT0206	BARNEGAT TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
85	TRIPSAVER ON POLE	BT1CF0406	CHESTERFIELD TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
86	TRIPSAVER ON POLE	BT2012MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
87	TRIPSAVER ON POLE	BT202BRE	BRIELLE BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
88	TRIPSAVER ON POLE	BT2061NPTTC	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
89	TRIPSAVER ON POLE	BT2066NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
90	TRIPSAVER ON POLE	BT2092OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
91	TRIPSAVER ON POLE	BT209BEC	BEACHWOOD BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
92	TRIPSAVER ON POLE	BT210BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
93	TRIPSAVER ON POLE	BT2180PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
94	TRIPSAVER ON POLE	BT2187CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
95	TRIPSAVER ON POLE	BT218LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
96	TRIPSAVER ON POLE	BT2217CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
97	TRIPSAVER ON POLE	BT2240LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
98	TRIPSAVER ON POLE	BT2248BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
99	TRIPSAVER ON POLE	BT2260MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
100	TRIPSAVER ON POLE	BT2279LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
101	TRIPSAVER ON POLE	BT2280JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
102	TRIPSAVER ON POLE	BT2281CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
103	TRIPSAVER ON POLE	BT2281HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
104	TRIPSAVER ON POLE	BT2344BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
105	TRIPSAVER ON POLE	BT2359RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
106	TRIPSAVER ON POLE	BT2368BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
107	TRIPSAVER ON POLE	BT2370BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
108	TRIPSAVER ON POLE	BT2370JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
109	TRIPSAVER ON POLE	BT2373FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
110	TRIPSAVER ON POLE	BT2377NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
111	TRIPSAVER ON POLE	BT2390MPN	MANALAPAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
112	TRIPSAVER ON POLE	BT2401RA	RANDOLPH TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
113	TRIPSAVER ON POLE	BT2430OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
114	TRIPSAVER ON POLE	BT243HLB	HIGHLANDS BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
115	TRIPSAVER ON POLE	BT2454CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
116	TRIPSAVER ON POLE	BT2463NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
117	TRIPSAVER ON POLE	BT2464PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
118	TRIPSAVER ON POLE	BT2466OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
119	TRIPSAVER ON POLE	BT2477LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
120	TRIPSAVER ON POLE	BT2479SHR	SHREWSBURY TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
121	TRIPSAVER ON POLE	BT2494SHR	SHREWSBURY TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
122	TRIPSAVER ON POLE	BT2500MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
123	TRIPSAVER ON POLE	BT2513RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
124	TRIPSAVER ON POLE	BT2520RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
125	TRIPSAVER ON POLE	BT2527RA	MT ARLINGTON BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
126	TRIPSAVER ON POLE	BT2528LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
127	TRIPSAVER ON POLE	BT2551CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
128	TRIPSAVER ON POLE	BT2559MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
129	TRIPSAVER ON POLE	BT255PA	PLUMSTED TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
130	TRIPSAVER ON POLE	BT256RD	RIVERDALE BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
131	TRIPSAVER ON POLE	BT258ERD	RIVERDALE BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
132	TRIPSAVER ON POLE	BT2598BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
133	TRIPSAVER ON POLE	BT2623SHR	SHREWSBURY TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
134	TRIPSAVER ON POLE	BT264SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
135	TRIPSAVER ON POLE	BT2667PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
136	TRIPSAVER ON POLE	BT267MT	MENDHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
137	TRIPSAVER ON POLE	BT267WT	WASHINGTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
138	TRIPSAVER ON POLE	BT2691PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
139	TRIPSAVER ON POLE	BT2693JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
140	TRIPSAVER ON POLE	BT2702OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
141	TRIPSAVER ON POLE	BT2713DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
142	TRIPSAVER ON POLE	BT271HGT	HIGHTSTOWN BOROUGH (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
143	TRIPSAVER ON POLE	BT273NC	NEPTUNE CITY BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
144	TRIPSAVER ON POLE	BT2759BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
145	TRIPSAVER ON POLE	BT2769OBR0005	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
146	TRIPSAVER ON POLE	BT2790MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2024
147	TRIPSAVER ON POLE	BT27SE0017	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024
148	TRIPSAVER ON POLE	BT2807BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
149	TRIPSAVER ON POLE	BT2816LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2024

A FirstEnergy Com	pany	_					
Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
150	TRIPSAVER ON POLE	BT2856DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2024
151	TRIPSAVER ON POLE	JC2628SE	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
TOTAL 2024 CO	OSTS					\$ 2,473,500	
Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
152	TRIPSAVER ON POLE	BT2899RA	RANDOLPH TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
153	TRIPSAVER ON POLE	BT2900JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
154	TRIPSAVER ON POLE	BT293NPT0008	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
155	TRIPSAVER ON POLE	BT2944JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
156	TRIPSAVER ON POLE	BT298WT	WASHINGTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
157	TRIPSAVER ON POLE	BT2SHR	SHREWSBURY BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
158	TRIPSAVER ON POLE	BT3010JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
159	TRIPSAVER ON POLE	BT3020BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
160	TRIPSAVER ON POLE	BT302PPB	POINT PLEASANT BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
161	TRIPSAVER ON POLE	BT3078RA	RANDOLPH TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
162	TRIPSAVER ON POLE	BT3142PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
163	TRIPSAVER ON POLE	BT314DVT0012	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
164	TRIPSAVER ON POLE	BT315ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
165	TRIPSAVER ON POLE	BT3182RT	ROCKAWAY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
166	TRIPSAVER ON POLE	BT31HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
167	TRIPSAVER ON POLE	BT3219OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
168	TRIPSAVER ON POLE	BT3279FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
169	TRIPSAVER ON POLE	BT3331BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
170	TRIPSAVER ON POLE	BT3383HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
171	TRIPSAVER ON POLE	BT3399MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
172	TRIPSAVER ON POLE	BT33LAC0228	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
173	TRIPSAVER ON POLE	BT34070WNE	WANAQUE BOROUGH (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
174	TRIPSAVER ON POLE	BT3464OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
175	TRIPSAVER ON POLE	BT3507DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
176	TRIPSAVER ON POLE	BT352UNB	UNION BEACH BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
177	TRIPSAVER ON POLE	BT3537BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
178	TRIPSAVER ON POLE	BT3561PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
179	TRIPSAVER ON POLE	BT3607DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
180	TRIPSAVER ON POLE	BT3628DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
181	TRIPSAVER ON POLE	BT3686MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
182	TRIPSAVER ON POLE	BT3693DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
183	TRIPSAVER ON POLE	BT3720DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
184	TRIPSAVER ON POLE	BT3747BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
185	TRIPSAVER ON POLE	BT374LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
186	TRIPSAVER ON POLE	BT3785BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
187	TRIPSAVER ON POLE	BT379SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
188	TRIPSAVER ON POLE	BT3818OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
189	TRIPSAVER ON POLE	BT3845BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
190	TRIPSAVER ON POLE	BT3850WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
191	TRIPSAVER ON POLE	BT387FH	FAIR HAVEN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
192	TRIPSAVER ON POLE	BT3942DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
193	TRIPSAVER ON POLE	BT3976BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
194	TRIPSAVER ON POLE	BT40004PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
195	TRIPSAVER ON POLE	BT40005SE	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
196	TRIPSAVER ON POLE	BT40021PBE	PINE BEACH BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
197	TRIPSAVER ON POLE	BT40027SSP	SEASIDE PARK BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
198	TRIPSAVER ON POLE	BT40031SL	SPRING LAKE BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
199	TRIPSAVER ON POLE	BT40034PCT	LONG HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
200	TRIPSAVER ON POLE	BT40039LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
201	TRIPSAVER ON POLE	BT40040SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
202	TRIPSAVER ON POLE	BT40043WNE	WANAQUE BOROUGH (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
203	TRIPSAVER ON POLE	BT40047NPE	NEW PROVIDENCE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
204	TRIPSAVER ON POLE	BT40053MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
205	TRIPSAVER ON POLE	BT40061CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
206	TRIPSAVER ON POLE	BT40062MP	MORRIS PLAINS BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
207	TRIPSAVER ON POLE	BT40064M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

A FirstEnergy Com Location Count		l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
208	TRIPSAVER ON POLE	BT40070OPT	OCEANPORT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
209	TRIPSAVER ON POLE	BT40087PBE	PINE BEACH BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
210	TRIPSAVER ON POLE	BT40093NPE	NEW PROVIDENCE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
211	TRIPSAVER ON POLE	BT40100ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
212	TRIPSAVER ON POLE	BT40102D	DEAL BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
213	TRIPSAVER ON POLE	BT40102SP	SPRINGFIELD TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
214	TRIPSAVER ON POLE	BT40104ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
215	TRIPSAVER ON POLE	BT40104TF	TINTON FALLS BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
216	TRIPSAVER ON POLE	BT40107SLH	SPRING LAKE HGT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
217	TRIPSAVER ON POLE	BT40107WNE	WANAQUE BOROUGH (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
218	TRIPSAVER ON POLE	BT40110SLH	SPRING LAKE HGT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
219	TRIPSAVER ON POLE	BT40115HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
220	TRIPSAVER ON POLE	BT40115PCT	LONG HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
221	TRIPSAVER ON POLE	BT40115SLH	SPRING LAKE HGT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
222	TRIPSAVER ON POLE	BT40119CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
223	TRIPSAVER ON POLE	BT40119SBL	SOUTH BELMAR BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
224	TRIPSAVER ON POLE	BT40128OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
225	TRIPSAVER ON POLE	BT40134AH	ATLANTIC HIGHLD BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
226	TRIPSAVER ON POLE	BT40138CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
227	TRIPSAVER ON POLE	BT40141EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
228	TRIPSAVER ON POLE	BT40143SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
229	TRIPSAVER ON POLE	BT40150HD	HARDING TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
230	TRIPSAVER ON POLE	BT40150KG	KEANSBURG BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
231	TRIPSAVER ON POLE	BT40152NPE	NEW PROVIDENCE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
232	TRIPSAVER ON POLE	BT40153PPB	POINT PLEASANT BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
233	TRIPSAVER ON POLE	BT40157JG	JAMESBURG BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
234	TRIPSAVER ON POLE	BT40158AH	ATLANTIC HIGHLD BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
235	TRIPSAVER ON POLE	BT40160SU	SUMMIT CITY (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
236	TRIPSAVER ON POLE	BT40162SFU	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
237	TRIPSAVER ON POLE	BT40163BH	BAY HEAD BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
238	TRIPSAVER ON POLE	BT40176BRE	BRIELLE BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
239	TRIPSAVER ON POLE	BT40180KG	KEANSBURG BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
240	TRIPSAVER ON POLE	BT40195WY	WAYNE TOWNSHIP (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
241	TRIPSAVER ON POLE	BT40196PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
242	TRIPSAVER ON POLE	BT40197WY	WAYNE TOWNSHIP (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
243	TRIPSAVER ON POLE	BT40198PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
244	TRIPSAVER ON POLE	BT40207MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
245	TRIPSAVER ON POLE	BT40210JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
246	TRIPSAVER ON POLE	BT402130BR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
247	TRIPSAVER ON POLE	BT40216RTB	ROOSEVELT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
248	TRIPSAVER ON POLE	BT40224M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
249	TRIPSAVER ON POLE	BT40224RTB	ROOSEVELT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
250	TRIPSAVER ON POLE	BT40249MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
251	TRIPSAVER ON POLE	BT40253ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
252	TRIPSAVER ON POLE	BT40259EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
253	TRIPSAVER ON POLE	BT40264MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
254	TRIPSAVER ON POLE	BT40270MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
255	TRIPSAVER ON POLE	BT40272MNT	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
256	TRIPSAVER ON POLE	BT40278MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
257	TRIPSAVER ON POLE	BT40282PPB	POINT PLEASANT BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
258	TRIPSAVER ON POLE	BT40293HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
259	TRIPSAVER ON POLE	BT40300BT	BOONTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
260	TRIPSAVER ON POLE	BT40300PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
261	TRIPSAVER ON POLE	BT40311FPB	FLORHAM PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
262	TRIPSAVER ON POLE	BT40312SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
263	TRIPSAVER ON POLE	BT40323OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
264	TRIPSAVER ON POLE	BT40327FPB	FLORHAM PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
265	TRIPSAVER ON POLE	BT40327OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
266	TRIPSAVER ON POLE	BT40334PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
267	TRIPSAVER ON POLE	BT40335OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
268	TRIPSAVER ON POLE	ВТ40336ВК	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
269	TRIPSAVER ON POLE	BT40336SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
270	TRIPSAVER ON POLE	BT40347CMT	CHATHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
271	TRIPSAVER ON POLE	BT40360PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
272	TRIPSAVER ON POLE	BT40363OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
273	TRIPSAVER ON POLE	BT40364WLB	WEST LONG BRANCH BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
274	TRIPSAVER ON POLE	BT40365CMT	CHATHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
275	TRIPSAVER ON POLE	BT40367MNT	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
276	TRIPSAVER ON POLE	BT403710BR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
277	TRIPSAVER ON POLE	BT40376BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
278	TRIPSAVER ON POLE	BT40379BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
279	TRIPSAVER ON POLE	BT40380BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
280	TRIPSAVER ON POLE	BT40380PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
281	TRIPSAVER ON POLE	BT40394MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
282	TRIPSAVER ON POLE	BT40407EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
283	TRIPSAVER ON POLE	BT40413EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
284	TRIPSAVER ON POLE	BT40422OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
285	TRIPSAVER ON POLE	BT40425BT	BOONTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
286	TRIPSAVER ON POLE	BT40440BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
287	TRIPSAVER ON POLE	BT40443MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
288	TRIPSAVER ON POLE	BT40462SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
289	TRIPSAVER ON POLE	BT40473BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
290	TRIPSAVER ON POLE	BT40477BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
291	TRIPSAVER ON POLE	BT40483CMT	CHATHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
292	TRIPSAVER ON POLE	BT40503EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
293	TRIPSAVER ON POLE	BT40535PA	PLUMSTED TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
294	TRIPSAVER ON POLE	BT40538FPB	FLORHAM PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
295	TRIPSAVER ON POLE	BT40539PA	PLUMSTED TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
296	TRIPSAVER ON POLE	BT40549PCT	LONG HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
297	TRIPSAVER ON POLE	BT40556MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
298	TRIPSAVER ON POLE	BT40565NH	NEW HANOVER TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
299	TRIPSAVER ON POLE	BT40593MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
300	TRIPSAVER ON POLE	BT4059WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
301	TRIPSAVER ON POLE	BT40601MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
302	TRIPSAVER ON POLE	BT40604MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
303	TRIPSAVER ON POLE	BT40606PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
304	TRIPSAVER ON POLE	BT40614SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
305	TRIPSAVER ON POLE	BT40644NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
306	TRIPSAVER ON POLE	BT40652NC	NEPTUNE CITY BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
307	TRIPSAVER ON POLE	BT40683NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
308	TRIPSAVER ON POLE	BT40689HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
309	TRIPSAVER ON POLE	BT40712BT	BOONTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
310	TRIPSAVER ON POLE	BT40712OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
311	TRIPSAVER ON POLE	BT40712PCT	LONG HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
312	TRIPSAVER ON POLE	BT40718MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

A FirstEnergy Com Location Count		l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
313	TRIPSAVER ON POLE	BT40749BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
314	TRIPSAVER ON POLE	BT40754HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
315	TRIPSAVER ON POLE	BT4075BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
316	TRIPSAVER ON POLE	BT40766M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
317	TRIPSAVER ON POLE	BT40771BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
318	TRIPSAVER ON POLE	BT40798BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
319	TRIPSAVER ON POLE	BT40813HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
320	TRIPSAVER ON POLE	BT40819MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
321	TRIPSAVER ON POLE	BT40830MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
322	TRIPSAVER ON POLE	BT40858MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
323	TRIPSAVER ON POLE	BT40860MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
324	TRIPSAVER ON POLE	BT40869LBR	LONG BRANCH CITY (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
325	TRIPSAVER ON POLE	BT40919CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
326	TRIPSAVER ON POLE	BT40954MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
327	TRIPSAVER ON POLE	BT40969CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
328	TRIPSAVER ON POLE	BT41080PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
329	TRIPSAVER ON POLE	BT41128WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
330	TRIPSAVER ON POLE	BT41155WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
331	TRIPSAVER ON POLE	BT41167WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
332	TRIPSAVER ON POLE	BT41217PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
333	TRIPSAVER ON POLE	BT41304LBR	LONG BRANCH CITY (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
334	TRIPSAVER ON POLE	BT4133BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
335	TRIPSAVER ON POLE	BT41367PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
336	TRIPSAVER ON POLE	BT41396PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
337	TRIPSAVER ON POLE	BT41489WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
338	TRIPSAVER ON POLE	BT41518WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
339	TRIPSAVER ON POLE	BT41632MLN	MILLBURN TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
340	TRIPSAVER ON POLE	BT41636MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
341	TRIPSAVER ON POLE	BT41739WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
342	TRIPSAVER ON POLE	BT41771MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
343	TRIPSAVER ON POLE	BT41919PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
344	TRIPSAVER ON POLE	BT4202BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
345	TRIPSAVER ON POLE	BT4220DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
346	TRIPSAVER ON POLE	BT423PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
347	TRIPSAVER ON POLE	BT4301MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2025
348	TRIPSAVER ON POLE	BT4314BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
349	TRIPSAVER ON POLE	BT4319MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
350	TRIPSAVER ON POLE	BT4348MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2025
351	TRIPSAVER ON POLE	BT4357MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2025
352	TRIPSAVER ON POLE	BT4391BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
353	TRIPSAVER ON POLE	BT441MSB	MOUNTAINSIDE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
354	TRIPSAVER ON POLE	BT44MM	MENDHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
355	TRIPSAVER ON POLE	BT44SP0402	CHESTERFIELD TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
356	TRIPSAVER ON POLE	BT45044IH	ISLAND HEIGHTS BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
357	TRIPSAVER ON POLE	BT455PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
358	TRIPSAVER ON POLE	BT45668DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
359	TRIPSAVER ON POLE	BT4626HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
360	TRIPSAVER ON POLE	BT4659BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
361	TRIPSAVER ON POLE	BT46LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
362	TRIPSAVER ON POLE	BT4763JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
363	TRIPSAVER ON POLE	BT4794DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
364	TRIPSAVER ON POLE	BT4832MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
365	TRIPSAVER ON POLE	BT4850MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
366	TRIPSAVER ON POLE	BT488WLB	WEST LONG BRANCH BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
367	TRIPSAVER ON POLE	BT4897BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
368	TRIPSAVER ON POLE	BT492PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
369	TRIPSAVER ON POLE	BT49HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
370	TRIPSAVER ON POLE	BT5054MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
371	TRIPSAVER ON POLE	BT511NPE	NEW PROVIDENCE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
372	TRIPSAVER ON POLE	BT51260LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
373	TRIPSAVER ON POLE	BT5241MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
374	TRIPSAVER ON POLE	BT5250HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
375	TRIPSAVER ON POLE	BT530WLB	WEST LONG BRANCH BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
376	TRIPSAVER ON POLE	BT547CMT	CHATHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
377	TRIPSAVER ON POLE	BT5484HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
378	TRIPSAVER ON POLE	BT55001WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
379	TRIPSAVER ON POLE	BT5521MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
380	TRIPSAVER ON POLE	BT5575MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
381	TRIPSAVER ON POLE	BT557EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
382	TRIPSAVER ON POLE	BT569MM	MENDHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
383	TRIPSAVER ON POLE	BT577R	RINGWOOD BOROUGH (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
384	TRIPSAVER ON POLE	BT5798MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
385	TRIPSAVER ON POLE	BT57HGT	HIGHTSTOWN BOROUGH (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
386	TRIPSAVER ON POLE	BT592PPB	POINT PLEASANT BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
387	TRIPSAVER ON POLE	BT5953MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025

A FirstEnergy Com Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
388	TRIPSAVER ON POLE	BT59ML	MINE HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
389	TRIPSAVER ON POLE	BT60012FH	FAIR HAVEN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
390	TRIPSAVER ON POLE	BT60015FH	FAIR HAVEN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
391	TRIPSAVER ON POLE	BT60023SHB	SHREWSBURY BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
392	TRIPSAVER ON POLE	BT60067RN	RUMSON BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
393	TRIPSAVER ON POLE	BT6010WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
394	TRIPSAVER ON POLE	BT603BN	BOONTON TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
395	TRIPSAVER ON POLE	BT610PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
396	TRIPSAVER ON POLE	BT615AL	ALLAMUCHY TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
397	TRIPSAVER ON POLE	BT623RBK	RED BANK BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
398	TRIPSAVER ON POLE	BT626SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
399	TRIPSAVER ON POLE	BT649ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
400	TRIPSAVER ON POLE	BT653PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
401	TRIPSAVER ON POLE	BT66MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
402	TRIPSAVER ON POLE	BT682SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
403	TRIPSAVER ON POLE	BT687BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
404	TRIPSAVER ON POLE	BT6936MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
405	TRIPSAVER ON POLE	BT695BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
406	TRIPSAVER ON POLE	BT70045NB	NETCONG BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
407	TRIPSAVER ON POLE	BT70071BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
408	TRIPSAVER ON POLE	BT70081MB	MT ARLINGTON BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
409	TRIPSAVER ON POLE	BT700UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
410	TRIPSAVER ON POLE	BT70442BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
411	TRIPSAVER ON POLE	BT70489DN	DENVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
412	TRIPSAVER ON POLE	BT7171MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
413	TRIPSAVER ON POLE	BT7223MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
414	TRIPSAVER ON POLE	BT7312DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
415	TRIPSAVER ON POLE	BT735HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
416	TRIPSAVER ON POLE	BT7364MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
417	TRIPSAVER ON POLE	BT747PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
418	TRIPSAVER ON POLE	BT748CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
419	TRIPSAVER ON POLE	BT75010WLB	WEST LONG BRANCH BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
420	TRIPSAVER ON POLE	BT75BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
421	TRIPSAVER ON POLE	BT764HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
422	TRIPSAVER ON POLE	BT772LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
423	TRIPSAVER ON POLE	BT780LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
424	TRIPSAVER ON POLE	BT791PPB	POINT PLEASANT BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
425	TRIPSAVER ON POLE	BT7921MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
426	TRIPSAVER ON POLE	BT80LD0028	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
427	TRIPSAVER ON POLE	BT839ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
428	TRIPSAVER ON POLE	BT840ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
429	TRIPSAVER ON POLE	BT848RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
430	TRIPSAVER ON POLE	BT850LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
431	TRIPSAVER ON POLE	BT852EBW	EAST BRUNSWICK TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
432	TRIPSAVER ON POLE	BT854FPB	FLORHAM PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
433	TRIPSAVER ON POLE	BT868LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
434	TRIPSAVER ON POLE	BT886FPB	FLORHAM PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
435	TRIPSAVER ON POLE	BT888BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
436	TRIPSAVER ON POLE	BT894M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
437	TRIPSAVER ON POLE	BT894R	RINGWOOD BOROUGH (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
438	TRIPSAVER ON POLE	BT90017MAT	MATAWAN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
439	TRIPSAVER ON POLE	BT90182KG	KEANSBURG BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
440	TRIPSAVER ON POLE	BT90212KG	KEANSBURG BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
441	TRIPSAVER ON POLE	BT910BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
442	TRIPSAVER ON POLE	BT91SSP	SEASIDE PARK BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
443	TRIPSAVER ON POLE	BT923OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
444	TRIPSAVER ON POLE	BT945MPN	MANALAPAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
445	TRIPSAVER ON POLE	BT953WA	WASHINGTON TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
446	TRIPSAVER ON POLE	BT955BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
447	TRIPSAVER ON POLE	ВТ98ЕНТ	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025

A FirstEnergy Com Location Count		N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
448	TRIPSAVER ON POLE	BT995PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
449	TRIPSAVER ON POLE	BTA40112SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
450	TRIPSAVER ON POLE	JC1000FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
451	TRIPSAVER ON POLE	JC1001FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
452	TRIPSAVER ON POLE	JC1005WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
453	TRIPSAVER ON POLE	JC1006NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
454	TRIPSAVER ON POLE	JC1007HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
455	TRIPSAVER ON POLE	JC1008WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
456	TRIPSAVER ON POLE	JC1013BN	BOONTON TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
457	TRIPSAVER ON POLE	JC101LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
458	TRIPSAVER ON POLE	JC1037BT	BOONTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
459	TRIPSAVER ON POLE	JC1041LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
460	TRIPSAVER ON POLE	JC1045EW	EAST WINDSOR TOWNSHIP (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
461	TRIPSAVER ON POLE	JC1048LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
462	TRIPSAVER ON POLE	JC104MDTY51	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
463	TRIPSAVER ON POLE	JC1060DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
464	TRIPSAVER ON POLE	JC107ETNG59	EATONTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
465	TRIPSAVER ON POLE	JC107TF	TINTON FALLS BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
466	TRIPSAVER ON POLE	JC1083BT	BOONTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
467	TRIPSAVER ON POLE	JC1085MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
468	TRIPSAVER ON POLE	JC108MP	MORRIS PLAINS BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
469	TRIPSAVER ON POLE	JC1103MLN	MILLBURN TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
470	TRIPSAVER ON POLE	JC1117NPE	NEW PROVIDENCE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
471	TRIPSAVER ON POLE	JC111HA	HELMETTA BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
472	TRIPSAVER ON POLE	JC1124NPE	NEW PROVIDENCE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
473	TRIPSAVER ON POLE	JC1126HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
474	TRIPSAVER ON POLE	JC1130ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
475	TRIPSAVER ON POLE	JC113AH	ATLANTIC HIGHLD BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
476	TRIPSAVER ON POLE	JC1149HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
477	TRIPSAVER ON POLE	JC1151BT	BOONTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
478	TRIPSAVER ON POLE	JC1160ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
479	TRIPSAVER ON POLE	JC116SLH	SPRING LAKE HGT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
480	TRIPSAVER ON POLE	JC1174DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
481	TRIPSAVER ON POLE	JC1174UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
482	TRIPSAVER ON POLE	JC1187ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
483	TRIPSAVER ON POLE	JC1188HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
484	TRIPSAVER ON POLE	JC1195MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
485	TRIPSAVER ON POLE	JC1199M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
486	TRIPSAVER ON POLE	JC119MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
487	TRIPSAVER ON POLE	JC1201HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
488	TRIPSAVER ON POLE	JC1204UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
489	TRIPSAVER ON POLE	JC122WN	WARREN TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
490	TRIPSAVER ON POLE	JC1243OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
491	TRIPSAVER ON POLE	JC1246PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
492	TRIPSAVER ON POLE	JC1251PA	PLUMSTED TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025

A FirstEnergy Com Location Count		I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
493	TRIPSAVER ON POLE	JC1252B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
494	TRIPSAVER ON POLE	JC1253ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
495	TRIPSAVER ON POLE	JC1256ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
496	TRIPSAVER ON POLE	JC1259MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
497	TRIPSAVER ON POLE	JC1265MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
498	TRIPSAVER ON POLE	JC1267UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
499	TRIPSAVER ON POLE	JC1276MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
500	TRIPSAVER ON POLE	JC1288DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
501	TRIPSAVER ON POLE	JC129MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
502	TRIPSAVER ON POLE	JC1302MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
503	TRIPSAVER ON POLE	JC1306PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
504	TRIPSAVER ON POLE	JC130SUK63	SUMMIT CITY (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
505	TRIPSAVER ON POLE	JC1310PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
506	TRIPSAVER ON POLE	JC1313MC	MANCHESTER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
507	TRIPSAVER ON POLE	JC132TFQ95	TINTON FALLS BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
508	TRIPSAVER ON POLE	JC1337MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
509	TRIPSAVER ON POLE	JC134SP	SPRINGFIELD TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
510	TRIPSAVER ON POLE	JC137PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
511	TRIPSAVER ON POLE	JC1388LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
512	TRIPSAVER ON POLE	JC1395HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
513	TRIPSAVER ON POLE	JC13BKC203	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
514	TRIPSAVER ON POLE	JC13JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
515	TRIPSAVER ON POLE	JC1424M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
516	TRIPSAVER ON POLE	JC1431JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
517	TRIPSAVER ON POLE	JC143WY	WAYNE TOWNSHIP (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
518	TRIPSAVER ON POLE	JC1440EW	EAST WINDSOR TOWNSHIP (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
519	TRIPSAVER ON POLE	JC1442NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
520	TRIPSAVER ON POLE	JC144MDTJ218	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
521	TRIPSAVER ON POLE	JC1470JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
522	TRIPSAVER ON POLE	JC1486OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025

A FirstEnergy Comp	pany						
Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
523	TRIPSAVER ON POLE	JC1487MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
524	TRIPSAVER ON POLE	JC1503OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
525	TRIPSAVER ON POLE	JC1509EW	EAST WINDSOR TOWNSHIP (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
526	TRIPSAVER ON POLE	JC150HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
527	TRIPSAVER ON POLE	JC1514MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
528	TRIPSAVER ON POLE	JC1525DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
529	TRIPSAVER ON POLE	JC152ABTC211	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
530	TRIPSAVER ON POLE	JC1543LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
531	TRIPSAVER ON POLE	JC1606B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
532	TRIPSAVER ON POLE	JC1617ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
533	TRIPSAVER ON POLE	JC162MDTE57	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2025
534	TRIPSAVER ON POLE	JC163UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2025
535	TRIPSAVER ON POLE	JC1656FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
536	TRIPSAVER ON POLE	JC166RTB	ROOSEVELT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2025
TOTAL 2025 COSTS							
	EMENT WITH TRIPS						

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
537	TRIPSAVER ON POLE	JC1677LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
538	TRIPSAVER ON POLE	JC1706WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
539	TRIPSAVER ON POLE	JC1725PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
540	TRIPSAVER ON POLE	JC172M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
541	TRIPSAVER ON POLE	JC1745UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
542	TRIPSAVER ON POLE	JC1751OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
543	TRIPSAVER ON POLE	JC1765SE	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
544	TRIPSAVER ON POLE	JC179BREO67	BRIELLE BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
545	TRIPSAVER ON POLE	JC179HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
546	TRIPSAVER ON POLE	JC180PP	PT PLEASANT BEACH BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
547	TRIPSAVER ON POLE	JC180SP	SPRINGFIELD TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
548	TRIPSAVER ON POLE	JC183RD	RIVERDALE BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
549	TRIPSAVER ON POLE	JC184OGA	OCEAN GATE BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
550	TRIPSAVER ON POLE	JC1876LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
551	TRIPSAVER ON POLE	JC187IN	INTERLAKEN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
552	TRIPSAVER ON POLE	JC189MOB	MONMOUTH BEACH BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
553	TRIPSAVER ON POLE	JC18MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
554	TRIPSAVER ON POLE	JC1905DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
555	TRIPSAVER ON POLE	JC1921MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
556	TRIPSAVER ON POLE	JC1927NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
557	TRIPSAVER ON POLE	JC1936FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
558	TRIPSAVER ON POLE	JC193PTHD4	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
559	TRIPSAVER ON POLE	JC1954OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
560	TRIPSAVER ON POLE	JC196PBE	PINE BEACH BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
561	TRIPSAVER ON POLE	JC1970LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
562	TRIPSAVER ON POLE	JC1980PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
563	TRIPSAVER ON POLE	JC1983FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
564	TRIPSAVER ON POLE	JC1985DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
565	TRIPSAVER ON POLE	JC1986DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
566	TRIPSAVER ON POLE	JC1991OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
567	TRIPSAVER ON POLE	JC1LP	LINCOLN PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
568	TRIPSAVER ON POLE	JC1MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
569	TRIPSAVER ON POLE	JC1MSB	MOUNTAINSIDE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
570	TRIPSAVER ON POLE	JC2000ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
571	TRIPSAVER ON POLE	JC2006LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
572	TRIPSAVER ON POLE	JC2007ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
573	TRIPSAVER ON POLE	JC200WY	WAYNE TOWNSHIP (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
574	TRIPSAVER ON POLE	JC2010DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
575	TRIPSAVER ON POLE	JC2017OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
576	TRIPSAVER ON POLE	JC2020DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
577	TRIPSAVER ON POLE	JC2023MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
578	TRIPSAVER ON POLE	JC2024PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
579	TRIPSAVER ON POLE	JC2026PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
580	TRIPSAVER ON POLE	JC2032M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
581	TRIPSAVER ON POLE	JC2033PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
582	TRIPSAVER ON POLE	JC2033UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
583	TRIPSAVER ON POLE	JC2038MNT	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
584	TRIPSAVER ON POLE	JC203SBL	SOUTH BELMAR BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
585	TRIPSAVER ON POLE	JC2053PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
586	TRIPSAVER ON POLE	JC2054LBR	LONG BRANCH CITY (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
587	TRIPSAVER ON POLE	JC205FH	FAIR HAVEN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
588	TRIPSAVER ON POLE	JC205SP	SPRINGFIELD TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2026
589	TRIPSAVER ON POLE	JC2061MLN	MILLBURN TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2026
590	TRIPSAVER ON POLE	JC2065CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2026
591	TRIPSAVER ON POLE	JC2067MPN	MANALAPAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
592	TRIPSAVER ON POLE	JC2070BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
593	TRIPSAVER ON POLE	JC2073MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
594	TRIPSAVER ON POLE	JC208SHB	SHREWSBURY BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
595	TRIPSAVER ON POLE	JC209EBW	EAST BRUNSWICK TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026

A FirstEnergy Com Location Count		N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
596	TRIPSAVER ON POLE	JC2101OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
597	TRIPSAVER ON POLE	JC2118MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
598	TRIPSAVER ON POLE	JC211SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
599	TRIPSAVER ON POLE	JC2128PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
600	TRIPSAVER ON POLE	JC2130PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
601	TRIPSAVER ON POLE	JC2151BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
602	TRIPSAVER ON POLE	JC2157JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
603	TRIPSAVER ON POLE	JC2171PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
604	TRIPSAVER ON POLE	JC217BKT146	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
605	TRIPSAVER ON POLE	JC2182ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
606	TRIPSAVER ON POLE	JC2185PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
607	TRIPSAVER ON POLE	JC2188M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
608	TRIPSAVER ON POLE	JC2243MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
609	TRIPSAVER ON POLE	JC2249BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
610	TRIPSAVER ON POLE	JC224SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
611	TRIPSAVER ON POLE	JC225HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
612	TRIPSAVER ON POLE	JC2261M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
613	TRIPSAVER ON POLE	JC2261OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
614	TRIPSAVER ON POLE	JC227HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
615	TRIPSAVER ON POLE	JC228ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
616	TRIPSAVER ON POLE	JC22HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
617	TRIPSAVER ON POLE	JC2304MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
618	TRIPSAVER ON POLE	JC230SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
619	TRIPSAVER ON POLE	JC2313ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
620	TRIPSAVER ON POLE	JC231BGT	BARNEGAT TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
621	TRIPSAVER ON POLE	JC2335ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
622	TRIPSAVER ON POLE	JC2339MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
623	TRIPSAVER ON POLE	JC2353MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
624	TRIPSAVER ON POLE	JC235WLTL90	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
625	TRIPSAVER ON POLE	JC239ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
626	TRIPSAVER ON POLE	JC240BZ52	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
627	TRIPSAVER ON POLE	JC2430FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
628	TRIPSAVER ON POLE	JC243OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
629	TRIPSAVER ON POLE	JC2460UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
630	TRIPSAVER ON POLE	JC2468BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
631	TRIPSAVER ON POLE	JC2472MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
632	TRIPSAVER ON POLE	JC2482WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
633	TRIPSAVER ON POLE	JC2486NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
634	TRIPSAVER ON POLE	JC2486SE	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2026
635	TRIPSAVER ON POLE	JC2501HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
636	TRIPSAVER ON POLE	JC2531OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
637	TRIPSAVER ON POLE	JC255MAT	MATAWAN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
638	TRIPSAVER ON POLE	JC255SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
639	TRIPSAVER ON POLE	JC2578DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
640	TRIPSAVER ON POLE	JC2580MPN	MANALAPAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026

A FirstEnergy Com	pany		0 0	•			
Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
641	TRIPSAVER ON POLE	JC259HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2026
642	TRIPSAVER ON POLE	JC25PL	POMPTON LAKES BOROUGH (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2026
643	TRIPSAVER ON POLE	JC2622SE	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
TOTAL 2026 CO	OSTS					\$ 1,666,000	
			FUSE REPLAC	EMENT WITH TRIPSA	AVER II 2027		
Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
644	TRIPSAVER ON POLE	JC261UNB	UNION BEACH BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
645	TRIPSAVER ON POLE	JC2631MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
646	TRIPSAVER ON POLE	JC2637HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
647	TRIPSAVER ON POLE	JC2648FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
648	TRIPSAVER ON POLE	JC2675MNT	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
649	TRIPSAVER ON POLE	JC2681FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
650	TRIPSAVER ON POLE	JC2692PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
651	TRIPSAVER ON POLE	JC26BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
652	TRIPSAVER ON POLE	JC2739OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
653	TRIPSAVER ON POLE	JC277OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
654	TRIPSAVER ON POLE	JC280PPBT146	POINT PLEASANT BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
655	TRIPSAVER ON POLE	JC2820DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
656	TRIPSAVER ON POLE	JC2823SU	SUMMIT CITY (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
657	TRIPSAVER ON POLE	JC284LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
658	TRIPSAVER ON POLE	JC285SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
659	TRIPSAVER ON POLE	JC2961MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
660	TRIPSAVER ON POLE	JC2971JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
661	TRIPSAVER ON POLE	JC2995BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
662	TRIPSAVER ON POLE	JC29HGTJ136	HIGHTSTOWN BOROUGH (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
663	TRIPSAVER ON POLE	JC3018SU	SUMMIT CITY (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
664	TRIPSAVER ON POLE	JC-3019MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
665	TRIPSAVER ON POLE	JC3046DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
666	TRIPSAVER ON POLE	JC304OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
667	TRIPSAVER ON POLE	JC3051PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
668	TRIPSAVER ON POLE	JC306NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
669	TRIPSAVER ON POLE	JC307BEC	BEACHWOOD BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
670	TRIPSAVER ON POLE	JC3098DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
671	TRIPSAVER ON POLE	JC310MNT	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
672	TRIPSAVER ON POLE	JC314KP	KEYPORT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
673	TRIPSAVER ON POLE	JC3161DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
674	TRIPSAVER ON POLE	JC3180OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
675	TRIPSAVER ON POLE	JC3189DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
676	TRIPSAVER ON POLE	JC3194MNT	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
677	TRIPSAVER ON POLE	JC319EW	EAST WINDSOR TOWNSHIP (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
678	TRIPSAVER ON POLE	JC3207DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
679	TRIPSAVER ON POLE	JC3207MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
680	TRIPSAVER ON POLE	JC3209CN	COLTS NECK TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
681	TRIPSAVER ON POLE	JC3214BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
682	TRIPSAVER ON POLE	JC3222MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
683	TRIPSAVER ON POLE	JC3227LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
684	TRIPSAVER ON POLE	JC3227PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
685	TRIPSAVER ON POLE	JC3232JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
686	TRIPSAVER ON POLE	JC323SFQ17	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
687	TRIPSAVER ON POLE	JC3244BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
688	TRIPSAVER ON POLE	JC324EHTG761	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
689	TRIPSAVER ON POLE	JC325BRE	BRIELLE BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
690	TRIPSAVER ON POLE	JC3272PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
691	TRIPSAVER ON POLE	JC3277HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
692	TRIPSAVER ON POLE	JC327ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
693	TRIPSAVER ON POLE	JC327IH	ISLAND HEIGHTS BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
694	TRIPSAVER ON POLE	JC3317OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
695	TRIPSAVER ON POLE	JC331BEC	BEACHWOOD BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
696	TRIPSAVER ON POLE	JC331HLB	HIGHLANDS BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
697	TRIPSAVER ON POLE	JC3336SE	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
698	TRIPSAVER ON POLE	JC3349OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
699	TRIPSAVER ON POLE	JC3354DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
700	TRIPSAVER ON POLE	JC3366MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
701	TRIPSAVER ON POLE	JC338PPR44	PT PLEASANT BEACH BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
702	TRIPSAVER ON POLE	JC3429FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
703	TRIPSAVER ON POLE	JC346MTEG709	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
704	TRIPSAVER ON POLE	JC350LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
705	TRIPSAVER ON POLE	JC352ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
706	TRIPSAVER ON POLE	JC3561BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
707	TRIPSAVER ON POLE	JC3569SE	SAYREVILLE BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
708	TRIPSAVER ON POLE	JC356NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
709	TRIPSAVER ON POLE	JC357CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
710	TRIPSAVER ON POLE	JC35SDBG85	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
711	TRIPSAVER ON POLE	JC3613LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
712	TRIPSAVER ON POLE	JC3627PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
713	TRIPSAVER ON POLE	JC3634HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
714	TRIPSAVER ON POLE	JC3651HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
715	TRIPSAVER ON POLE	JC3668MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
716	TRIPSAVER ON POLE	JC3675HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
717	TRIPSAVER ON POLE	JC36IH	ISLAND HEIGHTS BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
718	TRIPSAVER ON POLE	JC36MPN	MANALAPAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
719	TRIPSAVER ON POLE	JC3720MC	MANCHESTER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
720	TRIPSAVER ON POLE	JC3752MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
721	TRIPSAVER ON POLE	JC3753NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
722	TRIPSAVER ON POLE	JC377M	MORRISTOWN TOWN (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
723	TRIPSAVER ON POLE	JC3786FRT	FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
724	TRIPSAVER ON POLE	JC378CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
725	TRIPSAVER ON POLE	JC3791HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
726	TRIPSAVER ON POLE	JC384MC	MANCHESTER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
727	TRIPSAVER ON POLE	JC387NPE	NEW PROVIDENCE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
728	TRIPSAVER ON POLE	JC3898B	BERKELEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
729	TRIPSAVER ON POLE	JC38SL	SPRING LAKE BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
730	TRIPSAVER ON POLE	JC392NC	NEPTUNE CITY BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
731	TRIPSAVER ON POLE	JC398PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
732	TRIPSAVER ON POLE	JC4036OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
733	TRIPSAVER ON POLE	JC4036WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
734	TRIPSAVER ON POLE	JC4069JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
735	TRIPSAVER ON POLE	JC407BLMD130	BELMAR BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
736	TRIPSAVER ON POLE	JC4100JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
737	TRIPSAVER ON POLE	JC4117PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
738	TRIPSAVER ON POLE	JC412HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
739	TRIPSAVER ON POLE	JC4135MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
740	TRIPSAVER ON POLE	JC4138JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
741	TRIPSAVER ON POLE	JC420PCT	LONG HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
742	TRIPSAVER ON POLE	JC4225BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
743	TRIPSAVER ON POLE	JC426MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
744	TRIPSAVER ON POLE	JC429DVTC55	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
745	TRIPSAVER ON POLE	JC4319JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
746	TRIPSAVER ON POLE	JC4365DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
747	TRIPSAVER ON POLE	JC4369LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
748	TRIPSAVER ON POLE	JC438SH	SOUTHAMPTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
749	TRIPSAVER ON POLE	JC441ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2027
750	TRIPSAVER ON POLE	JC446CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
751	TRIPSAVER ON POLE	JC447MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
752	TRIPSAVER ON POLE	JC448EW	EAST WINDSOR TOWNSHIP (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
753	TRIPSAVER ON POLE	JC449AH	ATLANTIC HIGHLD BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
754	TRIPSAVER ON POLE	JC44MAT	MATAWAN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2027
755	TRIPSAVER ON POLE	JC4500WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2027
756	TRIPSAVER ON POLE	JC452SEAD212	SEASIDE PARK BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
757	TRIPSAVER ON POLE	JC457OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
758	TRIPSAVER ON POLE	JC4596WN	WARREN TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
759	TRIPSAVER ON POLE	JC4679WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
760	TRIPSAVER ON POLE	JC470ON	OCEAN TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
761	TRIPSAVER ON POLE	JC470SG	SEA GIRT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
762	TRIPSAVER ON POLE	JC472PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
763	TRIPSAVER ON POLE	JC4758BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
764	TRIPSAVER ON POLE	JC4812OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
765	TRIPSAVER ON POLE	JC482ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
766	TRIPSAVER ON POLE	JC483RBK	RED BANK BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
767	TRIPSAVER ON POLE	JC4891BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
768	TRIPSAVER ON POLE	JC498ON	OCEAN TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
769	TRIPSAVER ON POLE	JC49SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
770	TRIPSAVER ON POLE	JC49SUK63	SUMMIT CITY (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
771	TRIPSAVER ON POLE	JC501HD	HARDING TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
772	TRIPSAVER ON POLE	JC506RD	RIVERDALE BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
773	TRIPSAVER ON POLE	JC5076OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
774	TRIPSAVER ON POLE	JC50WY	WAYNE TOWNSHIP (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
775	TRIPSAVER ON POLE	JC5102JK	JACKSON TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
776	TRIPSAVER ON POLE	JC5149DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
777	TRIPSAVER ON POLE	JC515HML	HOLMDEL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
778	TRIPSAVER ON POLE	JC5162OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
779	TRIPSAVER ON POLE	JC522HML	HOLMDEL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
780	TRIPSAVER ON POLE	JC524LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
781	TRIPSAVER ON POLE	JC524SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
782	TRIPSAVER ON POLE	JC532BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
783	TRIPSAVER ON POLE	JC5361OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
784	TRIPSAVER ON POLE	JC53RBK	RED BANK BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
785	TRIPSAVER ON POLE	JC540ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
786	TRIPSAVER ON POLE	JC5434MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
787	TRIPSAVER ON POLE	JC544PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
788	TRIPSAVER ON POLE	JC5471OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
789	TRIPSAVER ON POLE	JC56LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
790	TRIPSAVER ON POLE	JC572NOHS19	NORTH HANOVER TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
791	TRIPSAVER ON POLE	JC577ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
792	TRIPSAVER ON POLE	JC581CMT	CHATHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
793	TRIPSAVER ON POLE	JC581FPB	FLORHAM PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
794	TRIPSAVER ON POLE	JC5823OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
795	TRIPSAVER ON POLE	JC593CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
796	TRIPSAVER ON POLE	JC597PK	PEQUANNOCK TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
797	TRIPSAVER ON POLE	JC5984SH	SOUTHAMPTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
798	TRIPSAVER ON POLE	JC599PCT	LONG HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
799	TRIPSAVER ON POLE	JC6013BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
800	TRIPSAVER ON POLE	JC605EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
801	TRIPSAVER ON POLE	JC608OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
802	TRIPSAVER ON POLE	JC608PCT	LONG HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
803	TRIPSAVER ON POLE	JC608UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
804	TRIPSAVER ON POLE	JC61323PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
805	TRIPSAVER ON POLE	JC613WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
806	TRIPSAVER ON POLE	JC61861LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
807	TRIPSAVER ON POLE	JC62024OBR	MONROE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
808	TRIPSAVER ON POLE	JC62436EW	EAST WINDSOR TOWNSHIP (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
809	TRIPSAVER ON POLE	JC62439EW	EAST WINDSOR TOWNSHIP (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
810	TRIPSAVER ON POLE	JC6252DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
811	TRIPSAVER ON POLE	JC62584MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
812	TRIPSAVER ON POLE	JC6259LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
813	TRIPSAVER ON POLE	JC6260DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
814	TRIPSAVER ON POLE	JC6378LAC	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
815	TRIPSAVER ON POLE	JC638HGT	HIGHTSTOWN BOROUGH (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
816	TRIPSAVER ON POLE	JC638NOH	NORTH HANOVER TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
817	TRIPSAVER ON POLE	JC638PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
818	TRIPSAVER ON POLE	JC6448DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
819	TRIPSAVER ON POLE	JC646PCT	LONG HILL TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
820	TRIPSAVER ON POLE	JC650MAT	MATAWAN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
821	TRIPSAVER ON POLE	JC651SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
822	TRIPSAVER ON POLE	JC653HML	HOLMDEL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
823	TRIPSAVER ON POLE	JC653WLT	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
824	TRIPSAVER ON POLE	JC6691DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
825	TRIPSAVER ON POLE	JC670MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
826	TRIPSAVER ON POLE	JC6765DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
827	TRIPSAVER ON POLE	JC6824DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
828	TRIPSAVER ON POLE	JC684MC	MANCHESTER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
829	TRIPSAVER ON POLE	JC688PA	PLUMSTED TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
830	TRIPSAVER ON POLE	JC690HL	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
831	TRIPSAVER ON POLE	JC69WLTL90	WALL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
832	TRIPSAVER ON POLE	JC7007MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
833	TRIPSAVER ON POLE	JC703MC	MANCHESTER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
834	TRIPSAVER ON POLE	JC704KG	KEANSBURG BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
835	TRIPSAVER ON POLE	JC708-1UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
836	TRIPSAVER ON POLE	JC708BLM	BELMAR BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
837	TRIPSAVER ON POLE	JC7119HD	HARDING TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
838	TRIPSAVER ON POLE	JC712HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
839	TRIPSAVER ON POLE	JC713FPB	FLORHAM PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
840	TRIPSAVER ON POLE	JC715F	FREEHOLD BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
841	TRIPSAVER ON POLE	JC729MC	MANCHESTER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
842	TRIPSAVER ON POLE	JC7363DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
843	TRIPSAVER ON POLE	JC740ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
844	TRIPSAVER ON POLE	JC744RBK	RED BANK BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
845	TRIPSAVER ON POLE	JC7499MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
846	TRIPSAVER ON POLE	JC7507HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
847	TRIPSAVER ON POLE	JC753APK	ASBURY PARK CITY (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
848	TRIPSAVER ON POLE	JC753BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027

A FirstEnergy Com Location Count		I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
849	TRIPSAVER ON POLE	JC7597HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
850	TRIPSAVER ON POLE	JC75AV	AVON-BY-THE-SEA BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
851	TRIPSAVER ON POLE	JC75BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
852	TRIPSAVER ON POLE	JC761BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
853	TRIPSAVER ON POLE	JC76ELN	ENGLISHTOWN BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
854	TRIPSAVER ON POLE	JC76RTB	ROOSEVELT BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
855	TRIPSAVER ON POLE	JC7745DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
856	TRIPSAVER ON POLE	JC7760DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
857	TRIPSAVER ON POLE	JC780NPT	NEPTUNE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
858	TRIPSAVER ON POLE	JC783CMT	CHATHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
859	TRIPSAVER ON POLE	JC78APK	ASBURY PARK CITY (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
860	TRIPSAVER ON POLE	JC799EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
861	TRIPSAVER ON POLE	JC801PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
862	TRIPSAVER ON POLE	JC801SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
863	TRIPSAVER ON POLE	JC8086MDT	MIDDLETOWN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
864	TRIPSAVER ON POLE	JC808UF	UPPER FREEHOLD TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
865	TRIPSAVER ON POLE	JC80LPL116	LINCOLN PARK BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
866	TRIPSAVER ON POLE	JC80MLNA105	MILLBURN TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
867	TRIPSAVER ON POLE	JC8266DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
868	TRIPSAVER ON POLE	JC827PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
869	TRIPSAVER ON POLE	JC836CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
870	TRIPSAVER ON POLE	JC838ME	MILLSTONE TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
871	TRIPSAVER ON POLE	JC83SDB	SPOTSWOOD BOROUGH (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
872	TRIPSAVER ON POLE	JC845CM	CHATHAM BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
873	TRIPSAVER ON POLE	JC846BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
874	TRIPSAVER ON POLE	JC854HML	HOLMDEL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
875	TRIPSAVER ON POLE	JC859MTE	MONTVILLE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
876	TRIPSAVER ON POLE	JC859PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
877	TRIPSAVER ON POLE	JC85OGA	OCEAN GATE BOROUGH (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
878	TRIPSAVER ON POLE	JC862HR	HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027

A FirstEnergy Com	pany						
Location Count	LOCATION	(Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
879	TRIPSAVER ON POLE	JC863EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
880	TRIPSAVER ON POLE	JC863MAR	MARLBORO TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2027
881	TRIPSAVER ON POLE	JC863OC	OCEAN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2027
882	TRIPSAVER ON POLE	JC87LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2027
TOTAL 2027 CO	OSTS					\$ 3,978,000	
			FUSE REPLAC	EMENT WITH TRIPS	AVER II 2028		
Location Count	LOCATION	(Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
883	TRIPSAVER ON POLE	JC891MLN	MILLBURN TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
884	TRIPSAVER ON POLE	JC899CMT	CHATHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
885	TRIPSAVER ON POLE	JC900MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
886	TRIPSAVER ON JO	C90184LACQ121	LACEY TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
887	TRIPSAVER ON POLE	JC909BK	BRICK TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
888	TRIPSAVER ON POLE	JC91974DVTN92	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
889	TRIPSAVER ON POLE	JC921DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
890	TRIPSAVER ON POLE	JC934EW	EAST WINDSOR TOWNSHIP (MERCER)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
891	TRIPSAVER ON POLE	JC941WY	WAYNE TOWNSHIP (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
892	TRIPSAVER ON POLE	JC947MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
893	TRIPSAVER ON POLE	JC949ABT	ABERDEEN TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
894	TRIPSAVER ON POLE	JC949LVT	LIVINGSTON TOWNSHIP (ESSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
895	TRIPSAVER ON POLE	JC95AV	AVON-BY-THE-SEA BOROUGH (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
896	TRIPSAVER ON POLE	JC963MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
897	TRIPSAVER ON POLE	JC965HZ	HAZLET TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
898	TRIPSAVER ON POLE	JC97EHT	EAST HANOVER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
899	TRIPSAVER ON POLE	JC97HLS97	HOWELL TOWNSHIP (MONMOUTH)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
900	TRIPSAVER ON POLE	JC982OBR	OLD BRIDGE TOWNSHIP (MIDDLESEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
901	TRIPSAVER ON POLE	JC984MNL	MOUNTAIN LAKES BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
902	TRIPSAVER ON POLE	NJ1003BY	BYRAM TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
903	TRIPSAVER ON POLE	NJ1018ST	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
904	TRIPSAVER ON POLE	NJ1030RTH	RARITAN TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
905	TRIPSAVER ON POLE	NJ1045PGT	POHATCONG TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
906	TRIPSAVER ON POLE	NJ1046FK	FRANKFORD TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
907	TRIPSAVER ON POLE	NJ1053MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
908	TRIPSAVER ON POLE	NJ1054MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
909	TRIPSAVER ON POLE	NJ105MT	MENDHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
910	TRIPSAVER ON POLE	NJ1078BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
911	TRIPSAVER ON POLE	NJ1128MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
912	TRIPSAVER ON POLE	NJ1134HT	HOLLAND TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
913	TRIPSAVER ON POLE	NJ1158BY	BYRAM TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
914	TRIPSAVER ON POLE	NJ1181MG	MONTAGUE TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
915	TRIPSAVER ON POLE	NJ1182ST	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
916	TRIPSAVER ON POLE	NJ1189RTH	RARITAN TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
917	TRIPSAVER ON POLE	NJ1204MRT	MORRIS TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
918	TRIPSAVER ON POLE	NJ1206FR	FRANKLIN TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
919	TRIPSAVER ON POLE	NJ1213WG	WANTAGE TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
920	TRIPSAVER ON POLE	NJ1225BY	BYRAM TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
921	TRIPSAVER ON POLE	NJ1271KT	KNOWLTON TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
922	TRIPSAVER ON POLE	NJ127AL	ALLAMUCHY TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
923	TRIPSAVER ON POLE	NJ1329PTH	PARSIPPANY-TROY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
924	TRIPSAVER ON POLE	NJ1357MT	MENDHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
925	TRIPSAVER ON POLE	NJ1359HY	HARMONY TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
926	TRIPSAVER ON POLE	NJ135RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
927	TRIPSAVER ON POLE	NJ1366HO	HOPATCONG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
928	TRIPSAVER ON POLE	NJ1389CT	CHESTER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
929	TRIPSAVER ON POLE	NJ140H	HAMPTON BOROUGH (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
930	TRIPSAVER ON POLE	NJ144TT	TEWKSBURY TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
931	TRIPSAVER ON POLE	NJ1462BE	BETHLEHEM TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
932	TRIPSAVER ON POLE	NJ147BWT	BRIDGEWATER TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
933	TRIPSAVER ON POLE	NJ1482KT	KNOWLTON TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
934	TRIPSAVER ON POLE	NJ1483HO	HOPATCONG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
935	TRIPSAVER ON POLE	NJ148HO	HOPATCONG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
936	TRIPSAVER ON POLE	NJ1492RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
937	TRIPSAVER ON POLE	NJ1544ST	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
938	TRIPSAVER ON POLE	NJ1577RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
939	TRIPSAVER ON POLE	NJ1578RG	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
940	TRIPSAVER ON POLE	NJ1580RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
941	TRIPSAVER ON POLE	NJ1604HY	HARMONY TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
942	TRIPSAVER ON POLE	NJ160BD	BELVIDERE TOWN (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
943	TRIPSAVER ON POLE	NJ1668FK	FRANKFORD TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2028
944	TRIPSAVER ON POLE	NJ1719HO	HOPATCONG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2028
945	TRIPSAVER ON POLE	NJ174BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
946	TRIPSAVER ON POLE	NJ175RG	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2028
947	TRIPSAVER ON POLE	NJ176SB	SUSSEX BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
948	TRIPSAVER ON POLE	NJ1792EA	EAST AMWELL TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
949	TRIPSAVER ON POLE	NJ179BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
950	TRIPSAVER ON POLE	NJ181FNT	FREDON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
951	TRIPSAVER ON POLE	NJ1823HYN	HARDYSTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
952	TRIPSAVER ON POLE	NJ189WT	WASHINGTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
953	TRIPSAVER ON POLE	NJ1938MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
954	TRIPSAVER ON POLE	NJ1976J	JEFFERSON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
955	TRIPSAVER ON POLE	NJ1977J	JEFFERSON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
956	TRIPSAVER ON POLE	NJ2036RA	RANDOLPH TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
957	TRIPSAVER ON POLE	NJ2056RG	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
958	TRIPSAVER ON POLE	NJ2081RA	MT ARLINGTON BOROUGH (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
959	TRIPSAVER ON POLE	NJ2081VR	VERNON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
960	TRIPSAVER ON POLE	NJ209WT	WASHINGTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
961	TRIPSAVER ON POLE	NJ2113RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
962	TRIPSAVER ON POLE	NJ211WN	WARREN TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
963	TRIPSAVER ON POLE	NJ214WH	WHITE TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
964	TRIPSAVER ON POLE	NJ2176MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
965	TRIPSAVER ON POLE	NJ2198BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
966	TRIPSAVER ON POLE	NJ2224ST	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028

Location Count	LOCATION	l (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
967	TRIPSAVER ON POLE	NJ225RA	RANDOLPH TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
968	TRIPSAVER ON POLE	NJ228SN	STANHOPE BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
969	TRIPSAVER ON POLE	NJ232HB	HAMBURG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
970	TRIPSAVER ON POLE	NJ244BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
971	TRIPSAVER ON POLE	NJ248HBB	HIGH BRIDGE BOROUGH (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
972	TRIPSAVER ON POLE	NJ2564MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
973	TRIPSAVER ON POLE	NJ25HN	HAMPTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
974	TRIPSAVER ON POLE	NJ260GW	GREENWICH TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
975	TRIPSAVER ON POLE	NJ277FK	FRANKFORD TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
976	TRIPSAVER ON POLE	NJ284MT	MENDHAM TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
977	TRIPSAVER ON POLE	NJ286BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
978	TRIPSAVER ON POLE	NJ290MG	MONTAGUE TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
979	TRIPSAVER ON POLE	NJ2978RG	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
980	TRIPSAVER ON POLE	NJ299RU	ROXBURY TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
981	TRIPSAVER ON POLE	NJ301BE	BETHLEHEM TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
982	TRIPSAVER ON POLE	NJ302J	JEFFERSON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
983	TRIPSAVER ON POLE	NJ311WN	WARREN TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
984	TRIPSAVER ON POLE	NJ314HB	HAMBURG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
985	TRIPSAVER ON POLE	NJ3249ST	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
986	TRIPSAVER ON POLE	NJ327KT	KNOWLTON TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
987	TRIPSAVER ON POLE	NJ338HO	HOPATCONG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
988	TRIPSAVER ON POLE	NJ33FB	FAR HILLS BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
989	TRIPSAVER ON POLE	NJ347BE	BETHLEHEM TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
990	TRIPSAVER ON POLE	NJ34FT	FRANKLIN TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
991	TRIPSAVER ON POLE	NJ350MGA781	MONTAGUE TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
992	TRIPSAVER ON POLE	NJ3510ST	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
993	TRIPSAVER ON POLE	NJ351HB	HAMBURG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
994	TRIPSAVER ON POLE	NJ3540RG	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
995	TRIPSAVER ON POLE	NJ356HB	HAMBURG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
996	TRIPSAVER ON POLE	NJ361FK	FRANKFORD TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028

Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
997	TRIPSAVER ON POLE	NJ3631J	JEFFERSON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
998	TRIPSAVER ON POLE	NJ372AN	ALEXANDRIA TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
999	TRIPSAVER ON POLE	NJ374HN	HAMPTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
1000	TRIPSAVER ON POLE	NJ376HB	HAMBURG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
1001	TRIPSAVER ON POLE	NJ386LX	LOPATCONG TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
1002	TRIPSAVER ON POLE	NJ3975CTH	CLINTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
1003	TRIPSAVER ON POLE	NJ40SN	STANHOPE BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
1004	TRIPSAVER ON POLE	NJ422HY	HARMONY TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
1005	TRIPSAVER ON POLE	NJ435BDRX726	BEDMINSTER TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	SECOND HALF OF 2028
1006	TRIPSAVER ON POLE	NJ438AT	ANDOVER TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
1007	TRIPSAVER ON POLE	NJ440RG	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
1008	TRIPSAVER ON POLE	NJ442WNE	WANAQUE BOROUGH (PASSIAC)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
1009	TRIPSAVER ON POLE	NJ455FL	FRELINGHUYSEN TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
1010	TRIPSAVER ON POLE	NJ457AT	ANDOVER TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	SECOND HALF OF 2028
1011	TRIPSAVER ON POLE	NJ463MX	MANSFIELD TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	SECOND HALF OF 2028
TOTAL 2028 CO	OSTS					\$ 2,159,000	

A FirstEnergy Com Location Count		(Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
			FUSE REPLAC	EMENT WITH TRIPS	AVER II 2029		
Location Count	LOCATION	(Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1012	TRIPSAVER ON POLE	NJ482MX	MANSFIELD TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1013	TRIPSAVER ON POLE	NJ494HY	HARMONY TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1014	TRIPSAVER ON POLE	NJ511BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1015	TRIPSAVER ON POLE	NJ512SN	STANHOPE BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1016	TRIPSAVER ON POLE	NJ523RA	RANDOLPH TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1017	TRIPSAVER ON POLE	NJ5245SF	SPRINGFIELD TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1018	TRIPSAVER ON POLE	NJ543BL	BLAIRSTOWN TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1019	TRIPSAVER ON POLE	NJ551BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1020	TRIPSAVER ON POLE	NJ552RA	RANDOLPH TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1021	TRIPSAVER ON POLE	NJ593BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1022	TRIPSAVER ON POLE	NJ603NPE	NEW PROVIDENCE BOROUGH (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1023	TRIPSAVER ON POLE	NJ607BV	BERNARDS TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1024	TRIPSAVER ON POLE	NJ609BE	BETHLEHEM TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029

Location Count	LOCATION	(Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1025	TRIPSAVER ON POLE	NJ617PB	PEAPACK-GLADSTONE BORO (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1026	TRIPSAVER ON POLE	NJ641BHT	BERKELEY HEIGHT TOWNSHIP (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1027	TRIPSAVER ON POLE	NJ650BDR	BEDMINSTER TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1028	TRIPSAVER ON POLE	NJ650HY	HARMONY TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1029	TRIPSAVER ON POLE	NJ665BBT	BRANCHBURG TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1030	TRIPSAVER ON POLE	NJ665MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1031	TRIPSAVER ON POLE	NJ67GR	GREEN TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1032	TRIPSAVER ON POLE	NJ707UT	UNION TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1033	TRIPSAVER ON POLE	NJ722SD	SANDYSTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1034	TRIPSAVER ON POLE	NJ730UT	UNION TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1035	TRIPSAVER ON POLE	NJ741FT	FRANKLIN TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1036	TRIPSAVER ON POLE	NJ747BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1037	TRIPSAVER ON POLE	NJ761BB	BERNARDSVILLE BOROUGH (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1038	TRIPSAVER ON POLE	NJ782BBT	BRANCHBURG TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1039	TRIPSAVER ON POLE	NJ800HN	HAMPTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029

Location Count	LOCATION	I (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1040	TRIPSAVER ON POLE	NJ805HO	HOPATCONG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1041	TRIPSAVER ON POLE	NJ86WG	WANTAGE TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1042	TRIPSAVER ON POLE	NJ878FK	FRANKFORD TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1043	TRIPSAVER ON POLE	NJ890MO	MOUNT OLIVE TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1044	TRIPSAVER ON POLE	NJ892HN	HAMPTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1045	TRIPSAVER ON POLE	NJ928AT	ANDOVER TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1046	TRIPSAVER ON POLE	NJ930RA	RANDOLPH TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1047	TRIPSAVER ON POLE	NJ932J	JEFFERSON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1048	TRIPSAVER ON POLE	NJ942BBT	BRANCHBURG TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1049	TRIPSAVER ON POLE	NJ947AT	ANDOVER TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1050	TRIPSAVER ON POLE	NJ978ST	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1051	TRIPSAVER ON POLE	NJ99BBT	BRANCHBURG TOWNSHIP (SOMERSET)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1052	TRIPSAVER ON POLE	NJ99BD	BELVIDERE TOWN (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1053	TRIPSAVER ON POLE	UT104LTD	HAMPTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1054	TRIPSAVER ON POLE	UT11CARAIL	CALIFON BOROUGH (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1055	TRIPSAVER ON POLE	UT12STE94	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1056	TRIPSAVER ON POLE	UT13LBRT22	LEBANON BOROUGH (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1057	TRIPSAVER ON POLE	UT146UT519	UNION TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1058	TRIPSAVER ON POLE	UT14AUTK48	UNION TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1059	TRIPSAVER ON POLE	UT16FLA26	BLAIRSTOWN TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1060	TRIPSAVER ON POLE	UT16WHA3	WHITE TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1061	TRIPSAVER ON POLE	UT18HBBMINE	HIGH BRIDGE BOROUGH (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1062	TRIPSAVER ON POLE	UT1FTJ94	FRANKLIN TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1063	TRIPSAVER ON POLE	UT1HNG52	HAMPTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1064	TRIPSAVER ON POLE	UT1OBGRAN	OGDENSBURG BOROUGH (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1065	TRIPSAVER ON POLE	UT1RGD129	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1066	TRIPSAVER ON POLE	UT1RTHD125	RARITAN TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1067	TRIPSAVER ON POLE	UT1STJ72	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1068	TRIPSAVER ON POLE	UT1WTL6	WASHINGTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1069	TRIPSAVER ON POLE	UT214RG25	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029

Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1070	TRIPSAVER ON POLE	UT21CTF2	CHESTER TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1071	TRIPSAVER ON POLE	UT241WLH113	WALPACK TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1072	TRIPSAVER ON POLE	UT27BY	BYRAM TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1073	TRIPSAVER ON POLE	UT2HK3C6	HARDWICK TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1074	TRIPSAVER ON POLE	UT2KDG11	KINGWOOD TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1075	TRIPSAVER ON POLE	UT33RTHD5	RARITAN TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1076	TRIPSAVER ON POLE	UT34FLA25	FRELINGHUYSEN TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1077	TRIPSAVER ON POLE	UT34VRJ86	VERNON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1078	TRIPSAVER ON POLE	UT38HPD1	HOPE TOWNSHIP (WARREN)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1079	TRIPSAVER ON POLE	UT39KDG11	KINGWOOD TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1080	TRIPSAVER ON POLE	UT3CLBUSH	CLINTON TOWN (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1081	TRIPSAVER ON POLE	UT3HBBCHUR	HIGH BRIDGE BOROUGH (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1082	TRIPSAVER ON POLE	UT3MGD148	MONTAGUE TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1083	TRIPSAVER ON POLE	UT3SDH240	SANDYSTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1084	TRIPSAVER ON POLE	UT40STD	SPARTA TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029

A FirstEnergy Com, Location Count	LOCATION	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1085	TRIPSAVER ON POLE	UT44BEL1	BETHLEHEM TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1086	TRIPSAVER ON POLE	UT50WTG	WASHINGTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1087	TRIPSAVER ON POLE	UT60HYNJ11	HARDYSTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1088	TRIPSAVER ON POLE	UT6RGG4	READINGTON TOWNSHIP (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 17,000	FIRST HALF OF 2029
1089	TRIPSAVER ON POLE	UT93HNG	HAMPTON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1090	TRIPSAVER ON POLE	UTACAGUIN	CALIFON BOROUGH (HUNTERDON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1091	TRIPSAVER ON POLE	JC132BT	BOONTON TOWNSHIP (MORRIS)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
1092	TRIPSAVER ON POLE	WVT58VR1000	VERNON TOWNSHIP (SUSSEX)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1093	TRIPSAVER ON POLE	JC2053PM	PEMBERTON TOWNSHIP (BURLINGTON)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 25,500	FIRST HALF OF 2029
1094	TRIPSAVER ON POLE	JC130SUK63	SUMMIT CITY (UNION)	REPLACE LATERAL FUSES WITH S&C TRIPSAVER II RECLOSER.	REDUCE SUSTAINED OUTAGES ON LATERALS DUE TO TEMPORARY FAULTS.	\$ 8,500	FIRST HALF OF 2029
TOTAL 2029 CO	OSTS					\$ 1,300,500	

A FirstEnergy Co	, majouri	DISTRIBUTION CI	RCUIT OF THE FUTU	JRE 2024		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1		MOUNT OLIVE TOWNSHIP, WASHINGTON TOWNSHIP, CALIFON BOROUGH, CHESTER BOROUGH, LEBANON TOWNSHIP, WASHINGTON TOWNSHIP, CHESTER TOWNSHIP, WASHINGTON BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 6,080,504	2024
2		NEWTON TOWN,HAMPTON TOWNSHIP,JACKSON TOWNSHIP,FREDON TOWNSHIP,FRANKFORD TOWNSHIP,SANDYSTON TOWNSHIP,STILLWATER TOWNSHIP,MONTAGUE TOWNSHIP,BRANCHVILLE BOROUGH,NEW PROVIDENCE BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 4,389,978	2024
3		FRELINGHUYSEN TOWNSHIP,BLAIRSTOWN TOWNSHIP,KNOWLTON TOWNSHIP,LIBERTY TOWNSHIP,HOPE TOWNSHIP,HARDWICK TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 7,941,948	2024
4		CLINTON TOWN,CLINTON TOWNSHIP,FRANKLIN TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 2,385,138	2024
5		MARLBORO TOWNSHIP,COLTS NECK TOWNSHIP,MILLSTONE TOWNSHIP,FRANKFORD TOWNSHIP,MANALAPAN TOWNSHIP,MATAWAN BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 2,414,311	2024

A FirstEnergy Company UPDATES TO THE DISTRIBUTION MILLSTONE TOWNSHIP, EAST WINDSOR **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE TOWNSHIP, MANALAPAN CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 6 TOWNSHIP.ENGLISHTOWN DISTRIBUTION CIRCUIT OF THE 5.176.473 2024 ORDER TO IMPROVE RELIABILITY BOROUGH.MONROE FUTURE MODEL, WHERE AND RESILIENCY FOR TOWNSHIP, HIGHTSTOWN BOROUGH NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE MANALAPAN TOWNSHIP.OLD BRIDGE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 7 TOWNSHIP.FREEHOLD TOWNSHIP.COLTS DISTRIBUTION CIRCUIT OF THE 3.398.328 2024 ORDER TO IMPROVE RELIABILITY NECK TOWNSHIP, MARLBORO TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE PARSIPPANY TROY HILLS CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 8 TOWNSHIP, JEFFERSON TOWNSHIP, WEST DISTRIBUTION CIRCUIT OF THE 3,602,013 2024 ORDER TO IMPROVE RELIABILITY MILFORD TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE HAZLET TOWNSHIP, HOLMDEL CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 9 TOWNSHIP, ABERDEEN DISTRIBUTION CIRCUIT OF THE 3,448,488 2024 ORDER TO IMPROVE RELIABILITY TOWNSHIP.MATAWAN BOROUGH FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE ABERDEEN TOWNSHIP, MATAWAN CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 10 BOROUGH.MARLBORO TOWNSHIP.OLD DISTRIBUTION CIRCUIT OF THE 2.805.403 2024 ORDER TO IMPROVE RELIABILITY **BRIDGE TOWNSHIP** FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE RED BANK BOROUGH, MIDDLETOWN CORE INFRASTRUCTURE IN 11 DISTRIBUTION CIRCUIT OF THE 2,004,193 2024 **TOWNSHIP** ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

mpany					
	MIDDLETOWN TOWNSHIP,RED BANK BOROUGH,TINTON FALLS BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 1,946,233	2024
	FRELINGHUYSEN TOWNSHIP,BLAIRSTOWN TOWNSHIP,HOPE TOWNSHIP,KNOWLTON TOWNSHIP,WALPACK TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP,HARDWICK TOWNSHIP,GREEN TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 6,127,013	2024
COSTS				\$ 51,720,023	
	DISTRIBUTION CI	RCUIT OF THE FUTU	JRE 2025		
LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
	HAMBURG BOROUGH,FRANKLIN TOWNSHIP,VERNON TOWNSHIP,HARDYSTON TOWNSHIP,FRANKLIN BOROUGH,WANTAGE TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 2,656,118	2025
	KNOWLTON TOWNSHIP,BLAIRSTOWN TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 3,824,223	2025
	BYRAM TOWNSHIP,ROXBURY TOWNSHIP,ANDOVER TOWNSHIP,HOPATCONG BOROUGH,ANDOVER BOROUGH,JEFFERSON TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 5,606,313	2025
	COSTS	MIDDLETOWN TOWNSHIP, RED BANK BOROUGH, TINTON FALLS BOROUGH FRELINGHUYSEN TOWNSHIP, BLAIRSTOWN TOWNSHIP, HOPE TOWNSHIP, KNOWLTON TOWNSHIP, PARSIPPANY TROY HILLS TOWNSHIP, HARDWICK TOWNSHIP, GREEN TOWNSHIP HAMBURG BOROUGH, FRANKLIN TOWNSHIP, HARDYSTON TOWNSHIP, HARDYSTON TOWNSHIP, HARDYSTON TOWNSHIP, FRANKLIN BOROUGH, WANTAGE TOWNSHIP KNOWLTON TOWNSHIP, BLAIRSTOWN TOWNSHIP KNOWLTON TOWNSHIP, BLAIRSTOWN TOWNSHIP BYRAM TOWNSHIP, ROXBURY TOWNSHIP, ANDOVER TOWNSHIP, ANDOVER TOWNSHIP, HOPATCONG BOROUGH, ANDOVER	MIDDLETOWN TOWNSHIP,RED BANK BOROUGH, TINTON FALLS BOROUGH FRELINGHUYSEN TOWNSHIP,BLAIRSTOWN TOWNSHIP, MOPE TOWNSHIP,KNOWLTON TOWNSHIP, MALPACK TOWNSHIP, PARSIPPANY TROY HILLS TOWNSHIP, HARDWICK TOWNSHIP, GREEN TOWNSHIP, HARDWICK TOWNSHIP, GREEN TOWNSHIP, HARDWICK TOWNSHIP, GREEN TOWNSHIP, HARDWICK TOWNSHIP, GREEN NEEDED. DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED. BYRAM TOWNSHIP, BLAIRSTOWN TOWNSHIP CONSTRUCTION TO MEET THE FUTURE MODEL, WHERE NEEDED. BYRAM TOWNSHIP, ROXBURY TOWNSHIP, ROXBURY TOWNSHIP, ANDOVER TOWNSHIP, ANDOVER TOWNSHIP, HOPATCONG BOROUGH, ANDOVER TOWNSHIP CONSTRUCTION OF MEET THE FUTURE MODEL, WHERE TOWNSHIP, HOPATCONG BOROUGH, ANDOVER TOWNSHIP CONSTRUCTION TO MEET THE FUTURE MODEL, WHERE TOWNSHIP, ANDOVER TOWNSHIP, NO T	MIDDLETOWN TOWNSHIP, RED BANK BOROUGH, TINTON FALLS BOROUGH MIDDLETOWN TOWNSHIP, RED BANK BOROUGH, TINTON FALLS BOROUGH FRELINGHUYSEN TOWNSHIP, BLAIRSTOWN TOWNSHIP, HOPE TOWNSHIP, HARDWICK TOWNSHIP, GREEN DISTRIBUTION CIRCUIT OF THE FUTURE 2025 LOCATION (Substation/Circuit) TOWNSHIP, PARSIPOTON TOWNSHIP, EARLY TOWNSHIP, BLAIRSTOWN TOWNSHIP, HARDWISTON BOROUGH, ANDOVER BOROUGH, ANDOVER BOROUGH, HANDOVER BOROUGH, HANDOWER BOROUGH, HANDOVER BOROUGH, HANDOVER BOROUGH, HANDOVER BOROUGH, HANDOVER BOROUGH, HANDOVER BOROUGH, HANDOVER BOROUGH, HANDOWER	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN ORDARY OF POR CUSTOMERS. 1,946,233 1,94

UPDATES TO THE DISTRIBUTION ROCKAWAY TOWNSHIP, JEFFERSON UPGRADE SYSTEM TOWNSHIP, MOUNT ARLINGTON SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BOROUGH, RANDOLPH CORE INFRASTRUCTURE IN 17 DISTRIBUTION CIRCUIT OF THE 3.602.638 2025 TOWNSHIP, HOPATCONG ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE **BOROUGH.ROXBURY** AND RESILIENCY FOR NEEDED. TOWNSHIP.ANDOVER BOROUGH CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM FARMINGDALE BOROUGH, HOWELL SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, FREEHOLD CORE INFRASTRUCTURE IN 18 DISTRIBUTION CIRCUIT OF THE 1.124.583 2025 TOWNSHIP, FREEHOLD ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH, MARLBORO TOWNSHIP AND RESILIENCY FOR NEEDED. CUSTOMERS. WASHINGTON TOWNSHIP.WASHINGTON UPDATES TO THE DISTRIBUTION BOROUGH, GLEN GARDNER **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE BOROUGH, LEBANON CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 19 TOWNSHIP, HAMPTON DISTRIBUTION CIRCUIT OF THE 2,318,533 2025 ORDER TO IMPROVE RELIABILITY BOROUGH, BETHLEHEM FUTURE MODEL, WHERE AND RESILIENCY FOR TOWNSHIP, WASHINGTON NEEDED. **CUSTOMERS** TOWNSHIP, OXFORD TOWNSHIP **TOTAL 2025 COSTS** \$ 19,132,408 **DISTRIBUTION CIRCUIT OF THE FUTURE 2026** PROJECTED IN-Location LOCATION (Substation/Circuit) **TOWNSHIP COST ESTIMATE** DESCRIPTION **OBJECTIVE** Count SERVICE DATE UPDATES TO THE DISTRIBUTION FRANKLIN TOWNSHIP, MILFORD **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE BOROUGH, LAMBERTVILLE CITY, HOLLAND CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 20 TOWNSHIP, UNION TOWNSHIP, HIGH DISTRIBUTION CIRCUIT OF THE 6.116.198 2026 ORDER TO IMPROVE RELIABILITY BRIDGE BOROUGH, ALEXANDRIA FUTURE MODEL, WHERE AND RESILIENCY FOR **TOWNSHIP** NEEDED. CUSTOMERS. **TOTAL 2026 COSTS** \$ 6,116,198 **DISTRIBUTION CIRCUIT OF THE FUTURE 2027** PROJECTED IN-Location LOCATION (Substation/Circuit) **TOWNSHIP** DESCRIPTION **OBJECTIVE** COST ESTIMATE SERVICE DATE Count

UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE DENVILLE TOWNSHIP.MORRIS PLAINS CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 21 BOROUGH.PARSIPPANY TROY HILLS DISTRIBUTION CIRCUIT OF THE 3.173.048 2027 ORDER TO IMPROVE RELIABILITY **TOWNSHIP** FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM RINGWOOD BOROUGH, WANAQUE SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BOROUGH, WAYNE CORE INFRASTRUCTURE IN 22 DISTRIBUTION CIRCUIT OF THE 3,087,533 2027 TOWNSHIP, BLOOMING DALE ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH, FRANKLIN TOWNSHIP AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION MILLSTONE TOWNSHIP, PLUMSTED UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE TOWNSHIP, NORTH HANOVER CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 23 TOWNSHIP, JACKSON TOWNSHIP, UPPER DISTRIBUTION CIRCUIT OF THE 9,412,303 2027 ORDER TO IMPROVE RELIABILITY FREEHOLD TOWNSHIP, OCEAN FUTURE MODEL, WHERE AND RESILIENCY FOR TOWNSHIP, MANCHESTER TOWNSHIP NEEDED. **CUSTOMERS** BERNARDS TOWNSHIP, MORRIS UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** TOWNSHIP, HARDING SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, MORRISTOWN CORE INFRASTRUCTURE IN 24 DISTRIBUTION CIRCUIT OF THE 3,035,663 2027 TOWN, CHATHAM TOWNSHIP, MENDHAM ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE TOWNSHIP, BERNARDSVILLE AND RESILIENCY FOR NEEDED. BOROUGH.BEDMINSTER TOWNSHIP **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE MOUNT ARLINGTON BOROUGH, ROXBURY CORE INFRASTRUCTURE IN 25 DISTRIBUTION CIRCUIT OF THE 2,732,553 2027 **TOWNSHIP** ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE ROXBURY TOWNSHIP, MOUNT ARLINGTON CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 26 **BOROUGH, JEFFERSON** DISTRIBUTION CIRCUIT OF THE 1,413,788 2027 ORDER TO IMPROVE RELIABILITY TOWNSHIP, HOPATCONG BOROUGH FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

A FirstEnergy Company CHESTER TOWNSHIP, MENDHAM BOROUGH, MENDHAM UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** TOWNSHIP, BEDMINSTER SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP.RARITAN TOWNSHIP.CHESTER CORE INFRASTRUCTURE IN 27 DISTRIBUTION CIRCUIT OF THE \$ 5,046,468 2027 BOROUGH, BERNARDSVILLE ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH, FAR HILLS AND RESILIENCY FOR NEEDED. BOROUGH, PEAPACK AND GLADSTONE **CUSTOMERS BOROUGH** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE JEFFERSON TOWNSHIP, ROCKAWAY CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 28 DISTRIBUTION CIRCUIT OF THE 3,987,688 2027 TOWNSHIP, SPARTA TOWNSHIP, WAYNE ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE **TOWNSHIP** AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** RARITAN TOWNSHIP, KINGWOOD SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, FLEMINGTON CORE INFRASTRUCTURE IN 29 DISTRIBUTION CIRCUIT OF THE 3,947,478 2027 BOROUGH, STOCKTON ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH, DELAWARE TOWNSHIP AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE MORRIS TOWNSHIP, FLORHAM PARK CORE INFRASTRUCTURE IN 30 DISTRIBUTION CIRCUIT OF THE 2,232,933 2027 BOROUGH, MORRISTOWN TOWN ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM POMPTON LAKES SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BOROUGH, PEQUANNOCK CORE INFRASTRUCTURE IN DISTRIBUTION CIRCUIT OF THE 2027 31 3,077,198 TOWNSHIP, WAYNE TOWNSHIP, RIVERDALE ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE **BOROUGH** AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM HELMETTA BOROUGH, EAST BRUNSWICK SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, MONROE CORE INFRASTRUCTURE IN DISTRIBUTION CIRCUIT OF THE 32 1,989,808 2027 TOWNSHIP, JAMESBURG ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH, SPOTSWOOD BOROUGH AND RESILIENCY FOR NEEDED. CUSTOMERS.

UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE EATONTOWN BOROUGH, SHREWSBURY CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 33 **BOROUGH.SHREWSBURY** DISTRIBUTION CIRCUIT OF THE 2.959.723 2027 ORDER TO IMPROVE RELIABILITY TOWNSHIP, TINTON FALLS BOROUGH FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE PEMBERTON BOROUGH, PEMBERTON CORE INFRASTRUCTURE IN 34 DISTRIBUTION CIRCUIT OF THE 2.808.698 2027 TOWNSHIP, SOUTHAMPTON TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE FREEHOLD TOWNSHIP, FREEHOLD CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 35 BOROUGH, JACKSON DISTRIBUTION CIRCUIT OF THE 1,199,713 2027 ORDER TO IMPROVE RELIABILITY TOWNSHIP, LAKEWOOD TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE LAKEWOOD TOWNSHIP, JACKSON CORE INFRASTRUCTURE IN 36 DISTRIBUTION CIRCUIT OF THE 3,013,783 2027 TOWNSHIP, HOWELL TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE MANCHESTER TOWNSHIP, LAKEWOOD CORE INFRASTRUCTURE IN 37 DISTRIBUTION CIRCUIT OF THE 2.646.863 2027 TOWNSHIP.JACKSON TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOMS RIVER TOWNSHIP.BERKELEY CORE INFRASTRUCTURE IN DISTRIBUTION CIRCUIT OF THE 2027 38 2,607,113 **TOWNSHIP** ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BERKELEY TOWNSHIP, TOMS RIVER CORE INFRASTRUCTURE IN 39 DISTRIBUTION CIRCUIT OF THE 2.891.913 2027 TOWNSHIP, OCEAN TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE BEACHWOOD BOROUGH, TOMS RIVER CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 40 TOWNSHIP.BERKELEY TOWNSHIP.SOUTH DISTRIBUTION CIRCUIT OF THE 2.310.673 2027 ORDER TO IMPROVE RELIABILITY TOMS RIVER BOROUGH FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. CALIFON BOROUGH, BEDMINSTER UPDATES TO THE DISTRIBUTION TOWNSHIP, CLINTON **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE TOWNSHIP, WASHINGTON CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 41 TOWNSHIP, CHESTER DISTRIBUTION CIRCUIT OF THE 6,652,838 2027 ORDER TO IMPROVE RELIABILITY **BOROUGH, TEWKSBURY** FUTURE MODEL, WHERE AND RESILIENCY FOR TOWNSHIP, LEBANON NEEDED. **CUSTOMERS** TOWNSHIP, CHESTER TOWNSHIP UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** HIGHLANDS BOROUGH, RED BANK SYSTEM TO STRENGTHEN THE BOROUGH, RUMSON CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 42 BOROUGH.MIDDLETOWN DISTRIBUTION CIRCUIT OF THE 3,187,697 2027 ORDER TO IMPROVE RELIABILITY TOWNSHIP.ATLANTIC HIGHLANDS FUTURE MODEL. WHERE AND RESILIENCY FOR BOROUGH NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE ATLANTIC HIGHLANDS CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 43 BOROUGH.HIGHLANDS DISTRIBUTION CIRCUIT OF THE 4.948.997 2027 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH.MIDDLETOWN TOWNSHIP AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE LAKEWOOD TOWNSHIP.FREEHOLD CORE INFRASTRUCTURE IN DISTRIBUTION CIRCUIT OF THE 2027 44 1,189,653 BOROUGH, JACKSON TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

A FirstEnergy Company					
45	LACEY TOWNSHIP,BERKELEY TOWNSHIP,BARNEGAT TOWNSHIP,OCEAN TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 1,459,873	2027
46	MENDHAM BOROUGH,CHESTER TOWNSHIP,RANDOLPH TOWNSHIP,CHESTER BOROUGH,MENDHAM TOWNSHIP,WASHINGTON TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 322,463	2027
47	CHESTER BOROUGH,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,CHESTER TOWNSHIP,WASHINGTON TOWNSHIP,WASHINGTON BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 1,521,168	2027
48	BRANCHVILLE BOROUGH,HAMPTON TOWNSHIP,NEWTON TOWN,SANDYSTON TOWNSHIP,LAFAYETTE TOWNSHIP,FRANKFORD TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 583,013	2027
49	BETHLEHEM TOWNSHIP,HAMPTON BOROUGH,WASHINGTON TOWNSHIP,GREENWICH TOWNSHIP,FRANKLIN TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 839,348	2027

A FirstEnergy Company					
50	HARMONY TOWNSHIP, WASHINGTON TOWNSHIP, LEBANON TOWNSHIP, FRANKLIN TOWNSHIP, PHILLIPSBURG TOWN, WASHINGTON TOWNSHIP, WHITE TOWNSHIP, LOPATCONG TOWNSHIP, WASHINGTON BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 754,348	2027
51	HACKETTSTOWN TOWN,FRELINGHUYSEN TOWNSHIP,WASHINGTON BOROUGH,ALLAMUCHY TOWNSHIP,GREEN TOWNSHIP,LIBERTY TOWNSHIP,INDEPENDENCE TOWNSHIP,ANDOVER BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 243,878	2027
52	EAST HANOVER TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP,HANOVER TOWNSHIP,MORRIS PLAINS BOROUGH,DENVILLE TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 358,663	2027
53	MORRIS PLAINS BOROUGH,EAST HANOVER TOWNSHIP,MORRISTOWN TOWN,HANOVER TOWNSHIP,FLORHAM PARK BOROUGH,MORRIS TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 139,443	2027
54	MONTVILLE TOWNSHIP,LINCOLN PARK BOROUGH,PARSIPPANY TROY HILLS TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 100,688	2027

UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE SPRINGFIELD TOWNSHIP, MILLBURN CORE INFRASTRUCTURE IN 55 DISTRIBUTION CIRCUIT OF THE 2.311.363 2027 **TOWNSHIP** ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE EAST WINDSOR TOWNSHIP, HIGHTSTOWN CORE INFRASTRUCTURE IN 56 DISTRIBUTION CIRCUIT OF THE 778.843 2027 BOROUGH, WEST WINDSOR TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE COLTS NECK TOWNSHIP, TINTON FALLS CORE INFRASTRUCTURE IN 57 DISTRIBUTION CIRCUIT OF THE 237.883 2027 BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE EAST BRUNSWICK TOWNSHIP, OLD BRIDGE CORE INFRASTRUCTURE IN 58 DISTRIBUTION CIRCUIT OF THE 527,958 2027 **TOWNSHIP** ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 59 OLD BRIDGE TOWNSHIP DISTRIBUTION CIRCUIT OF THE 193,953 2027 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE MATAWAN BOROUGH, MARLBORO CORE INFRASTRUCTURE IN 60 DISTRIBUTION CIRCUIT OF THE 852,243 2027 TOWNSHIP, OLD BRIDGE TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 61 LONG BRANCH CITY DISTRIBUTION CIRCUIT OF THE 195.923 2027 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 62 BRICK TOWNSHIP. TOMS RIVER TOWNSHIP DISTRIBUTION CIRCUIT OF THE 1,034,863 2027 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 63 **BRICK TOWNSHIP** DISTRIBUTION CIRCUIT OF THE 242,828 2027 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 64 **BRICK TOWNSHIP** DISTRIBUTION CIRCUIT OF THE 354,163 2027 ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE POINT PLEASANT BOROUGH.BAY HEAD CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 65 BOROUGH.POINT PLEASANT BEACH DISTRIBUTION CIRCUIT OF THE 439.953 2027 ORDER TO IMPROVE RELIABILITY BOROUGH FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE FARMINGDALE BOROUGH, NEPTUNE CORE INFRASTRUCTURE IN 66 DISTRIBUTION CIRCUIT OF THE 803,968 2027 TOWNSHIP, WALL TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

A FirstEnergy Co	mpany						
67		COLTS NECK TOWNSHIP, NEPTUNE TOWNSHIP, HOWELL TOWNSHIP, TINTON FALLS BOROUGH, WALL TOWNSHIP, FARMINGDALE BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	358,648	2027
TOTAL 2027 C	OSTS				\$	94,209,599	
		DISTRIBUTION CI	RCUIT OF THE FUTU	JRE 2028			
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST	ESTIMATE	PROJECTED IN- SERVICE DATE
68		MANASQUAN BOROUGH,WALL TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	705,143	2028
69		BRIELLE BOROUGH,BRICK TOWNSHIP,BELMAR BOROUGH,MANASQUAN BOROUGH,MANALAPAN TOWNSHIP,WALL TOWNSHIP,BARNEGAT TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	473,663	2028
70		MOUNT OLIVE TOWNSHIP,CHESTER TOWNSHIP,WASHINGTON TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	518,498	2028
71		SPARTA TOWNSHIP,LAFAYETTE TOWNSHIP,STILLWATER TOWNSHIP,ANDOVER TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	273,418	2028

UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM WANTAGE TOWNSHIP, HAMBURG SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BOROUGH, VERNON CORE INFRASTRUCTURE IN 72 DISTRIBUTION CIRCUIT OF THE 844.868 2028 TOWNSHIP, HARDYSTON TOWNSHIP, HIGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE **BRIDGE BOROUGH** AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION BRANCHVILLE BOROUGH.MONTAGUE UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE TOWNSHIP.FRANKFORD CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 73 TOWNSHIP.WANTAGE TOWNSHIP.VERNON DISTRIBUTION CIRCUIT OF THE 648.218 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, STOCKTON FUTURE MODEL, WHERE AND RESILIENCY FOR BOROUGH, SUSSEX BOROUGH NEEDED. CUSTOMERS. PEAPACK AND GLADSTONE UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE BOROUGH, HOLLAND CONSTRUCTION TO MEET THE TOWNSHIP, MORRISTOWN CORE INFRASTRUCTURE IN 74 DISTRIBUTION CIRCUIT OF THE 414.408 2028 ORDER TO IMPROVE RELIABILITY TOWN, RANDOLPH TOWNSHIP, CHESTER FUTURE MODEL, WHERE TOWNSHIP, MORRIS TOWNSHIP, MENDHAM AND RESILIENCY FOR NEEDED. TOWNSHIP, MENDHAM BOROUGH **CUSTOMERS** PEAPACK AND GLADSTONE UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** BOROUGH, BERNARDSVILLE SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BOROUGH, CHESTER CORE INFRASTRUCTURE IN 75 DISTRIBUTION CIRCUIT OF THE 402.643 2028 TOWNSHIP, BERNARDS ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE TOWNSHIP, MENDHAM AND RESILIENCY FOR NEEDED. BOROUGH.MENDHAM TOWNSHIP **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** BERNARDS TOWNSHIP, MENDHAM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BOROUGH, RANDOLPH CORE INFRASTRUCTURE IN 76 DISTRIBUTION CIRCUIT OF THE 458.453 2028 TOWNSHIP.CHESTER ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE TOWNSHIP.MENDHAM TOWNSHIP AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE ROCKAWAY TOWNSHIP, MINE HILL CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 77 TOWNSHIP, DOVER TOWN, RANDOLPH DISTRIBUTION CIRCUIT OF THE 370,063 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, MORRIS TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

A FirstEnergy Company UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM WASHINGTON TOWNSHIP, WASHINGTON SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, LONG HILL CORE INFRASTRUCTURE IN 78 DISTRIBUTION CIRCUIT OF THE 413.258 2028 TOWNSHIP, ROXBURY ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE TOWNSHIP.WASHINGTON BOROUGH AND RESILIENCY FOR NEEDED. CUSTOMERS. WASHINGTON BOROUGH, WASHINGTON UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM TOWNSHIP, HACKETTSTOWN SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWN, INDEPENDENCE CORE INFRASTRUCTURE IN 79 DISTRIBUTION CIRCUIT OF THE 1.070.298 2028 TOWNSHIP, MANSFIELD ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE TOWNSHIP, WASHINGTON AND RESILIENCY FOR NEEDED. TOWNSHIP, MOUNT OLIVE TOWNSHIP CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SUSSEX BOROUGH, HARDYSTON SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, SANDYSTON CORE INFRASTRUCTURE IN 80 DISTRIBUTION CIRCUIT OF THE 3.192.838 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, WANTAGE TOWNSHIP, VERNON FUTURE MODEL, WHERE **TOWNSHIP** AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** HAMBURG BOROUGH, HARDYSTON SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, PARSIPPANY TROY HILLS CORE INFRASTRUCTURE IN 81 DISTRIBUTION CIRCUIT OF THE 259.633 2028 TOWNSHIP, SUSSEX BOROUGH, VERNON ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE **TOWNSHIP** AND RESILIENCY FOR NEEDED. **CUSTOMERS** HACKETTSTOWN TOWN, GREENWICH UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM TOWNSHIP, INDEPENDENCE SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, BYRAM TOWNSHIP, MOUNT CORE INFRASTRUCTURE IN 82 DISTRIBUTION CIRCUIT OF THE 640.038 2028 OLIVE TOWNSHIP, MANSFIELD ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE TOWNSHIP.ALLAMUCHY AND RESILIENCY FOR NEEDED. TOWNSHIP.JACKSON TOWNSHIP **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** UNION TOWNSHIP.HAMPTON SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BOROUGH.ALEXANDRIA TOWNSHIP.HIGH CORE INFRASTRUCTURE IN 83 DISTRIBUTION CIRCUIT OF THE 1,693,553 2028 BRIDGE BOROUGH, LEBANON ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE TOWNSHIP, BETHLEHEM TOWNSHIP AND RESILIENCY FOR NEEDED. **CUSTOMERS**

npany				
MILFORD BOROUGH,HAMPTON BOROUGH,MANSFIELD TOWNSHIP,BETHLEHEM TOWNSHIP,WASHINGTON TOWNSHIP,ALEXANDRIA TOWNSHIP,FRANKLIN TOWNSHIP,UNION TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 395,763	2028
EAST AMWELL TOWNSHIP, DELAWARE TOWNSHIP, FLEMINGTON BOROUGH, FREEHOLD TOWNSHIP, RARITAN TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 362,993	2028
BELVIDERE TOWN,LIBERTY TOWNSHIP,PHILLIPSBURG TOWN,WHITE TOWNSHIP,HARMONY TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 270,328	2028
CLINTON TOWNSHIP,BERNARDSVILLE BOROUGH,FRANKLIN TOWNSHIP,CLINTOI TOWN,UNION TOWNSHIP,HIGH BRIDGE BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 204,778	2028
ALEXANDRIA TOWNSHIP,UNION TOWNSHIP,CLINTON TOWN,FRANKLIN TOWNSHIP,FRANKLIN TOWNSHIP,CLINTOI TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 1,141,438	2028
WATCHUNG BOROUGH,BERKELEY HEIGHTS TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 352,553	2028
	BOROUGH,MANSFIELD TOWNSHIP,BETHLEHEM TOWNSHIP,MASHINGTON TOWNSHIP,ALEXANDRIA TOWNSHIP,FRANKLIN TOWNSHIP,UNION TOWNSHIP EAST AMWELL TOWNSHIP,DELAWARE TOWNSHIP,FLEMINGTON BOROUGH,FREEHOLD TOWNSHIP,RARITAN TOWNSHIP BELVIDERE TOWN,LIBERTY TOWNSHIP,PHILLIPSBURG TOWN,WHITE TOWNSHIP,HARMONY TOWNSHIP CLINTON TOWNSHIP,BERNARDSVILLE BOROUGH,FRANKLIN TOWNSHIP,CLINTON TOWN,UNION TOWNSHIP,HIGH BRIDGE BOROUGH ALEXANDRIA TOWNSHIP,UNION TOWNSHIP,CLINTON TOWNSHIP,CLINTON TOWNSHIP,FRANKLIN TOWNSHIP,CLINTON TOWNSHIP,FRANKLIN TOWNSHIP,CLINTON TOWNSHIP,FRANKLIN TOWNSHIP,CLINTON TOWNSHIP,FRANKLIN TOWNSHIP,CLINTON TOWNSHIP,FRANKLIN TOWNSHIP,CLINTON TOWNSHIP	MILFORD BOROUGH,HAMPTON BOROUGH,MANSFIELD TOWNSHIP,BETHLEHEM TOWNSHIP,WASHINGTON TOWNSHIP,ALEXANDRIA TOWNSHIP,FRANKLIN TOWNSHIP,UNION TOWNSHIP, FRANKLIN TOWNSHIP, PLEMINGTON BOROUGH, FREEHOLD TOWNSHIP,PHILLIPSBURG TOWN,WHITE TOWNSHIP,HARMONY TOWNSHIP CLINTON TOWNSHIP,HERNANDRY TOWNSHIP,HARMONY TOWNSHIP CLINTON TOWNSHIP,BERNARDSVILLE BOROUGH,FRANKLIN TOWNSHIP, ICINTON TOWN,UNION TOWNSHIP, HICH BRIDGE CLINTON TOWNSHIP, HICH BRIDGE BOROUGH ALEXANDRIA TOWNSHIP, LICH BRIDGE BOROUGH ALEXANDRIA TOWNSHIP, CLINTON TOWNSHIP, FRANKLIN TOWNSHIP, FRANKLIN TOWNSHIP, CLINTON TOWNSHIP, CLINTON TOWNSHIP, CLINTON TOWNSHIP, FRANKLIN TOWNSHIP, CLINTON TOWNSHIP WATCHUNG BOROUGH,BERKELEY HEIGHTS TOWNSHIP WATCHUNG BOROUGH,BERKEL	MILFORD BOROUGH, HAMPTON BOROUGH, MANSFIELD TOWNSHIP, BETRILEHEM TOWNSHIP, MERSHINGTON TOWNSHIP, MEANSHINGTON BOROUGH, FREEHOLD TOWNSHIP, FLEMINGTON BOROUGH, FREEHOLD TOWNSHIP, PARITIAN TOWNSHIP BELVIDERE TOWN, LIBERTY TOWNSHIP, PARITIAN TOWNSHIP TOWNSHIP, HILLIPSBURG TOWN, WHITE TOWNSHIP, HILLIPSBURG TOWN, WHITE TOWNSHIP, HILLIPSBURG TOWN, WHITE TOWNSHIP, HILLIPSBURG TOWN, WHITE SOROUGH, FREEHOLD TOWNSHIP, HILLIPSBURG TOWN, WHITE TOWNSHIP, HILLIPSBURG TOWN, WHITE SOROUGH, FREEHOLD TOWN, WHERE NEEDED. BELVIDERE TOWN, LIBERTY TOWNSHIP TOWNSHIP TOWNSHIP, HILLIPSBURG TOWN, WHITE STRIBUTION CIRCUIT OF THE CORE INFRASTRUCTURE IN SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED. CLINTON TOWNSHIP, HICH BRIDGE BOROUGH BRIDGE BOROUGH BRIDGE BOROUGH BRIDGE BOROUGH BRIDGE BOROUGH BRIDGE BOROUGH, WHERE NEEDED. CLINTON TOWNSHIP, LINTON TOWNSHIP, LINTON TOWNSHIP, CLINTON TOWNSHIP, LINTON TOWNSHIP,	MILFORD BOROUGH HAMPTON BOROUGH MANSFIELD TOWNSHIP BETHLEHEM TOWNSHIP PLETHENEM TOWNSHIP PRARTTAN TOWNSHIP TOWNSHIP PRARTTAN TOWNSHIP TOWNSHIP PARTTAN TOWNSHIP TOWNSHIP PRARTTAN TOWNSHIP

UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE WATCHUNG BOROUGH, GREEN BROOK CORE INFRASTRUCTURE IN 90 DISTRIBUTION CIRCUIT OF THE 195.678 2028 TOWNSHIP, WARREN TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE EAST HANOVER TOWNSHIP.PARSIPPANY CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 91 TROY HILLS TOWNSHIP.HANOVER DISTRIBUTION CIRCUIT OF THE 176.588 2028 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE **TOWNSHIP** AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE PARSIPPANY TROY HILLS CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 92 TOWNSHIP, HANOVER DISTRIBUTION CIRCUIT OF THE 217.643 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, MOUNTAIN LAKES BOROUGH FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** PARSIPPANY TROY HILLS SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, MONTVILLE CORE INFRASTRUCTURE IN 93 DISTRIBUTION CIRCUIT OF THE 100,753 2028 TOWNSHIP, BOONTON TOWN, BOONTON ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE **TOWNSHIP** AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** PARSIPPANY TROY HILLS SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, MORRIS TOWNSHIP, HARDING CORE INFRASTRUCTURE IN 94 DISTRIBUTION CIRCUIT OF THE 268.503 2028 TOWNSHIP, MORRIS PLAINS ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH.MORRISTOWN TOWN AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE MORRIS TOWNSHIP, PARSIPPANY TROY CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN HILLS TOWNSHIP, MORRIS PLAINS DISTRIBUTION CIRCUIT OF THE 2028 95 269,523 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE **BOROUGH** AND RESILIENCY FOR NEEDED. **CUSTOMERS**

UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE LIVINGSTON TOWNSHIP, MILLBURN CORE INFRASTRUCTURE IN 96 DISTRIBUTION CIRCUIT OF THE 459.963 2028 **TOWNSHIP** ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 97 LIVINGSTON TOWNSHIP DISTRIBUTION CIRCUIT OF THE 258.943 2028 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION HARDING TOWNSHIP, MADISON **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE BOROUGH, CHATHAM CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 98 BOROUGH, CHATHAM DISTRIBUTION CIRCUIT OF THE 529.233 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, FLORHAM PARK FUTURE MODEL, WHERE AND RESILIENCY FOR BOROUGH, LIVINGSTON TOWNSHIP NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE OLD BRIDGE TOWNSHIP, MIDDLETOWN CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 99 TOWNSHIP, SOUTH AMBOY DISTRIBUTION CIRCUIT OF THE 112,533 2028 ORDER TO IMPROVE RELIABILITY CITY.SAYREVILLE BOROUGH FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** FREEHOLD BOROUGH, FREEHOLD SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, HOWELL CORE INFRASTRUCTURE IN 100 DISTRIBUTION CIRCUIT OF THE 114.718 2028 TOWNSHIP, FARMING DALE ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH.WALL TOWNSHIP AND RESILIENCY FOR NEEDED. **CUSTOMERS** OLD BRIDGE TOWNSHIP, FREEHOLD UPDATES TO THE DISTRIBUTION TOWNSHIP, JAMESBURG **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE BOROUGH, COLTS NECK CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 101 TOWNSHIP, ENGLISHTOWN DISTRIBUTION CIRCUIT OF THE 508,653 2028 ORDER TO IMPROVE RELIABILITY BOROUGH, MARLBORO FUTURE MODEL, WHERE AND RESILIENCY FOR TOWNSHIP, MONROE NEEDED. **CUSTOMERS** TOWNSHIP, MANALAPAN TOWNSHIP

UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE ENGLISHTOWN BOROUGH, MANALAPAN CORE INFRASTRUCTURE IN 102 DISTRIBUTION CIRCUIT OF THE 538.293 2028 TOWNSHIP, MARLBORO TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE FREEHOLD BOROUGH.WEST WINDSOR CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 103 TOWNSHIP.FREEHOLD TOWNSHIP.WALL DISTRIBUTION CIRCUIT OF THE 179,438 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, HOWELL TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. MILLSTONE TOWNSHIP, ROBBINSVILLE TOWNSHIP, ROOSEVELT BOROUGH, WEST UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** WINDSOR TOWNSHIP, EAST WINDSOR SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, HIGHTSTOWN CORE INFRASTRUCTURE IN 104 DISTRIBUTION CIRCUIT OF THE 1,152,823 2028 BOROUGH, MANALAPAN ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE TOWNSHIP, UPPER FREEHOLD AND RESILIENCY FOR NEEDED. TOWNSHIP.FREEHOLD **CUSTOMERS** BOROUGH, FREEHOLD TOWNSHIP UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE MANALAPAN TOWNSHIP, FREEHOLD CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 105 BOROUGH.FREEHOLD DISTRIBUTION CIRCUIT OF THE \$ 241,563 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, ENGLISHTOWN BOROUGH FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE HAZLET TOWNSHIP, UNION BEACH CORE INFRASTRUCTURE IN 106 DISTRIBUTION CIRCUIT OF THE \$ 486,083 2028 BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** HAZLET TOWNSHIP, KEYPORT SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE BOROUGH, KEANSBURG CORE INFRASTRUCTURE IN 107 DISTRIBUTION CIRCUIT OF THE 894.678 2028 BOROUGH, MATAWAN BOROUGH, OLD ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BRIDGE TOWNSHIP, ABERDEEN TOWNSHIP AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE SAYREVILLE BOROUGH, OLD BRIDGE CORE INFRASTRUCTURE IN 108 DISTRIBUTION CIRCUIT OF THE 222.948 2028 TOWNSHIP, SOUTH AMBOY CITY ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE OLD BRIDGE TOWNSHIP, EAST BRUNSWICH CORE INFRASTRUCTURE IN 109 DISTRIBUTION CIRCUIT OF THE 326.563 2028 TOWNSHIP.SPOTSWOOD BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** KEYPORT BOROUGH, MONROE SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, MATAWAN CORE INFRASTRUCTURE IN 110 DISTRIBUTION CIRCUIT OF THE 1,204,473 2028 BOROUGH, MARLBORO TOWNSHIP, OLD ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE **BRIDGE TOWNSHIP** AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE MANALAPAN TOWNSHIP.ENGLISHTOWN CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 111 BOROUGH.OLD BRIDGE DISTRIBUTION CIRCUIT OF THE 260.553 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, MARLBORO TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE EAST WINDSOR TOWNSHIP, UPPER CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 112 FREEHOLD TOWNSHIP, MILLSTONE DISTRIBUTION CIRCUIT OF THE 215,803 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, ROBBINSVILLE TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE MARLBORO TOWNSHIP, MATAWAN CORE INFRASTRUCTURE IN 113 DISTRIBUTION CIRCUIT OF THE 161.868 2028 BOROUGH, ABERDEEN TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE MARLBORO TOWNSHIP, ENGLISHTOWN CORE INFRASTRUCTURE IN 114 DISTRIBUTION CIRCUIT OF THE 331.178 2028 BOROUGH, MANALAPAN TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE FREEHOLD TOWNSHIP, MANALAPAN CORE INFRASTRUCTURE IN 115 DISTRIBUTION CIRCUIT OF THE 396.253 2028 TOWNSHIP.FREEHOLD BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE HOLMDEL TOWNSHIP, COLTS NECK CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 116 TOWNSHIP, FREEHOLD DISTRIBUTION CIRCUIT OF THE 263,068 2028 ORDER TO IMPROVE RELIABILITY TOWNSHIP, MARLBORO TOWNSHIP FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE KEYPORT BOROUGH, HAZLET CORE INFRASTRUCTURE IN 117 DISTRIBUTION CIRCUIT OF THE 244.668 2028 TOWNSHIP, HOLMDEL TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE HAZLET TOWNSHIP, MIDDLETOWN CORE INFRASTRUCTURE IN 118 DISTRIBUTION CIRCUIT OF THE 2028 189,468 **TOWNSHIP** ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE SHREWSBURY TOWNSHIP, TINTON FALLS CORE INFRASTRUCTURE IN 119 DISTRIBUTION CIRCUIT OF THE 250.718 2028 BOROUGH, SHREWSBURY BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE EATONTOWN BOROUGH, LONG BRANCH CORE INFRASTRUCTURE IN 120 DISTRIBUTION CIRCUIT OF THE 159.323 2028 CITY, WEST LONG BRANCH BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TINTON FALLS BOROUGH, MIDDLETOWN CORE INFRASTRUCTURE IN 121 DISTRIBUTION CIRCUIT OF THE 179.153 2028 TOWNSHIP, RED BANK BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE RED BANK BOROUGH, MIDDLETOWN CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 122 TOWNSHIP.TINTON FALLS DISTRIBUTION CIRCUIT OF THE 253,633 2028 ORDER TO IMPROVE RELIABILITY BOROUGH.HOLMDEL TOWNSHIP FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE LONG BRANCH CITY, MONMOUTH BEACH CORE INFRASTRUCTURE IN 123 DISTRIBUTION CIRCUIT OF THE 302,178 2028 BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 124 FAIR HAVEN BOROUGH DISTRIBUTION CIRCUIT OF THE 323,098 2028 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** OCEAN TOWNSHIP, BERKELEY SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, TINTON FALLS CORE INFRASTRUCTURE IN 125 DISTRIBUTION CIRCUIT OF THE 496.778 2028 BOROUGH, ASBURY PARK CITY, OCEAN ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE **TOWNSHIP** AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 126 **EATONTOWN BOROUGH** DISTRIBUTION CIRCUIT OF THE 269.983 2028 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** POINT PLEASANT BEACH BOROUGH, BAY SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE HEAD BOROUGH, BRICK TOWNSHIP, POINT CORE INFRASTRUCTURE IN 127 DISTRIBUTION CIRCUIT OF THE 983.908 2028 PLEASANT BOROUGH.MANTOLOKING ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE BOROUGH AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** OCEAN TOWNSHIP, TOMS RIVER SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, LONG BRANCH CITY, BRICK CORE INFRASTRUCTURE IN 128 DISTRIBUTION CIRCUIT OF THE 424,593 2028 TOWNSHIP, SOUTH TOMS RIVER ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE **BOROUGH** AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE OCEAN TOWNSHIP, BRICK CORE INFRASTRUCTURE IN 129 DISTRIBUTION CIRCUIT OF THE 303.448 2028 TOWNSHIP.WALL TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** NEPTUNE TOWNSHIP.OCEAN SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, OCEAN TOWNSHIP, TINTON CORE INFRASTRUCTURE IN 130 DISTRIBUTION CIRCUIT OF THE 312.993 2028 FALLS BOROUGH, SHREWSBURY ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE TOWNSHIP, NEPTUNE CITY BOROUGH AND RESILIENCY FOR NEEDED. **CUSTOMERS**

A FirstEnergy Cor	mpany						
131		MIDDLETOWN TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	200,163	2028
TOTAL 2028 C	OSTS				\$	30,089,267	
		DISTRIBUTION CI	RCUIT OF THE FUTU	JRE 2029			
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	cos	T ESTIMATE	PROJECTED IN- SERVICE DATE
132		POINT PLEASANT BEACH BOROUGH,POINT PLEASANT BOROUGH,BRICK TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	↔	1,188,733	2029
133		MIDDLETOWN TOWNSHIP,HAZLET TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	265,253	2029
134		MIDDLETOWN TOWNSHIP,UNION BEACH BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	317,478	2029
135		MIDDLETOWN TOWNSHIP,FAIR HAVEN BOROUGH,RUMSON BOROUGH	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$	640,973	2029

UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 136 SPRING LAKE BOROUGH, WALL TOWNSHIP DISTRIBUTION CIRCUIT OF THE 236.748 2029 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE TOMS RIVER TOWNSHIP, NEPTUNE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 137 TOWNSHIP, WALL TOWNSHIP, NEPTUNE DISTRIBUTION CIRCUIT OF THE 162.038 2029 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE **CITY BOROUGH** AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE WALL TOWNSHIP, BELMAR CORE INFRASTRUCTURE IN 138 DISTRIBUTION CIRCUIT OF THE 623,423 2029 BOROUGH, LAKE COMO BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 139 TOMS RIVER TOWNSHIP DISTRIBUTION CIRCUIT OF THE 287,248 2029 ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE LACEY TOWNSHIP, BARNEGAT CORE INFRASTRUCTURE IN 140 DISTRIBUTION CIRCUIT OF THE 671.883 2029 TOWNSHIP, BERKELEY TOWNSHIP ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS.

A FirstEnergy Company					
141	JACKSON TOWNSHIP, NORTH HANOVER TOWNSHIP, SPRINGFIELD TOWNSHIP, PLUMSTED TOWNSHIP, NEW HANOVER TOWNSHIP, WRIGHTSTOWN BOROUGH, OCEAN TOWNSHIP, CHESTERFIELD TOWNSHIP, MANSFIELD TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 300,803	2029
142	BRICK TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 915,838	2029
143	SPRINGFIELD TOWNSHIP, WRIGHTSTOWN BOROUGH, PEMBERTON BOROUGH, SOUTHAMPTON TOWNSHIP, PEMBERTON TOWNSHIP, NEW HANOVER TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 309,113	2029
144	WOODLAND TOWNSHIP,PEMBERTON TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 959,523	2029
145	PLUMSTED TOWNSHIP,MILLSTONE TOWNSHIP,UPPER FREEHOLD TOWNSHIP,JACKSON TOWNSHIP	UPGRADE SYSTEM CONSTRUCTION TO MEET THE DISTRIBUTION CIRCUIT OF THE FUTURE MODEL, WHERE NEEDED.	UPDATES TO THE DISTRIBUTION SYSTEM TO STRENGTHEN THE CORE INFRASTRUCTURE IN ORDER TO IMPROVE RELIABILITY AND RESILIENCY FOR CUSTOMERS.	\$ 622,088	2029

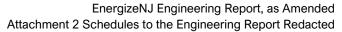
MILLSTONE TOWNSHIP, FREEHOLD UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** TOWNSHIP, UPPER FREEHOLD SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE TOWNSHIP, FREEHOLD CORE INFRASTRUCTURE IN 146 DISTRIBUTION CIRCUIT OF THE 906.178 2029 BOROUGH, JACKSON ORDER TO IMPROVE RELIABILITY FUTURE MODEL. WHERE TOWNSHIP.MANALAPAN AND RESILIENCY FOR NEEDED. TOWNSHIP.SEASIDE PARK BOROUGH CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE PEMBERTON TOWNSHIP, WOODLAND CORE INFRASTRUCTURE IN 147 DISTRIBUTION CIRCUIT OF THE 176.673 2029 TOWNSHIP, PEMBERTON BOROUGH ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE HOWELL TOWNSHIP, JACKSON CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 148 TOWNSHIP.TOMS RIVER DISTRIBUTION CIRCUIT OF THE 269.353 2029 ORDER TO IMPROVE RELIABILITY TOWNSHIP, LAKEWOOD TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE LACEY TOWNSHIP, BARNEGAT CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 149 TOWNSHIP, OCEAN TOWNSHIP, OCEAN DISTRIBUTION CIRCUIT OF THE 599.603 2029 ORDER TO IMPROVE RELIABILITY **TOWNSHIP** FUTURE MODEL. WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE LACEY TOWNSHIP.SHREWSBURY CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 150 BOROUGH.BERKELEY TOWNSHIP.OCEAN DISTRIBUTION CIRCUIT OF THE 477.688 2029 ORDER TO IMPROVE RELIABILITY TOWNSHIP, LAKEWOOD TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE BERKELEY TOWNSHIP, LACEY CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN TOWNSHIP.SOUTHAMPTON DISTRIBUTION CIRCUIT OF THE 2029 151 108,793 ORDER TO IMPROVE RELIABILITY TOWNSHIP, OCEAN TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS**

A FirstEnergy Company UPDATES TO THE DISTRIBUTION NORTH HANOVER TOWNSHIP, NEW UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE HANOVER TOWNSHIP, WRIGHTSTOWN CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 152 BOROUGH.PEMBERTON DISTRIBUTION CIRCUIT OF THE 164.973 2029 ORDER TO IMPROVE RELIABILITY TOWNSHIP, PEMBERTON FUTURE MODEL. WHERE AND RESILIENCY FOR BOROUGH.SPRINGFIELD TOWNSHIP NEEDED. CUSTOMERS. TOMS RIVER TOWNSHIP, SOUTH TOMS UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE RIVER BOROUGH, ISLAND HEIGHTS CONSTRUCTION TO MEET THE BOROUGH, SEASIDE PARK CORE INFRASTRUCTURE IN 153 DISTRIBUTION CIRCUIT OF THE 402.233 2029 ORDER TO IMPROVE RELIABILITY BOROUGH, BERKELEY FUTURE MODEL, WHERE TOWNSHIP.SAYREVILLE BOROUGH.OCEAN AND RESILIENCY FOR NEEDED. **TOWNSHIP** CUSTOMERS. UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE SOUTH TOMS RIVER BOROUGH, TOMS CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 154 RIVER TOWNSHIP.LONG BRANCH DISTRIBUTION CIRCUIT OF THE 585,788 2029 ORDER TO IMPROVE RELIABILITY CITY, BERKELEY TOWNSHIP FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 155 LAKEWOOD TOWNSHIP.BRICK TOWNSHIP DISTRIBUTION CIRCUIT OF THE 157,498 2029 ORDER TO IMPROVE RELIABILITY FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION HOWELL TOWNSHIP, FARMINGDALE **UPGRADE SYSTEM** SYSTEM TO STRENGTHEN THE BOROUGH, JACKSON CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 156 TOWNSHIP.MANCHESTER DISTRIBUTION CIRCUIT OF THE 236.618 2029 ORDER TO IMPROVE RELIABILITY TOWNSHIP, NEPTUNE TOWNSHIP, WALL FUTURE MODEL, WHERE AND RESILIENCY FOR **TOWNSHIP** NEEDED. **CUSTOMERS** UPDATES TO THE DISTRIBUTION UPGRADE SYSTEM SYSTEM TO STRENGTHEN THE FREEHOLD TOWNSHIP, MANALAPAN CONSTRUCTION TO MEET THE CORE INFRASTRUCTURE IN 157 TOWNSHIP, MARLBORO DISTRIBUTION CIRCUIT OF THE 1,663,423 2029 ORDER TO IMPROVE RELIABILITY TOWNSHIP, ENGLISHTOWN BOROUGH FUTURE MODEL, WHERE AND RESILIENCY FOR NEEDED. **CUSTOMERS TOTAL 2029 COSTS** 13,249,963

CIRCUIT PROTECTION AND SECTIONIZATION 2024								
Location Count			TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE	
1	RECLOSER ON POLE	BT70161DN	DENVILLE TOWNSHIP (MORRIS)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2024	
2	RECLOSER ON POLE	BT40484LD	LAKEWOOD TOWNSHIP (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2024	
3	RECLOSER ON POLE	UT3BEG2	BETHLEHEM TOWNSHIP (HUNTERDON)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2024	
4	RECLOSER ON POLE	NJ175EA	EAST AMWELL TOWNSHIP (HUNTERDON)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2024	
5	RECLOSER ON POLE	BT45198DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2024	
6	RECLOSER ON POLE	BT1060ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2024	

TOTAL 2024 COSTS						595,000		
7	RECLOSER ON POLE	BT1604AP	ALPHA BOROUGH (WARREN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THRE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	E \$	85,000	SECOND HALF OF 2024

CIRCUIT PROTECTION AND SECTIONIZATION 2025								
Location Count			TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE	
8	RECLOSER ON POLE	BT45104BEC	BEACHWOOD BOROUGH (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2025	
9	RECLOSER ON POLE	JC256F	FREEHOLD BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2025	
10	RECLOSER ON POLE	NJ64LB	LEBANON BOROUGH (HUNTERDON)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2025	
11	RECLOSER ON POLE	BT60014RN	RUMSON BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2025	
12	RECLOSER ON POLE	JC266RN	RUMSON BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2025	
13	RECLOSER ON POLE	214170A38554	BERKELEY TOWNSHIP (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2025	


A FirstEnergy (Company						
14	RECLOSER ON POLE	JC608B	BERKELEY TOWNSHIP (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2025
15	RECLOSER ON POLE	NJ32NT	NEWTON TOWN (SUSSEX)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2025
16	RECLOSER ON POLE	JC302RBK	RED BANK BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2025
17	RECLOSER ON POLE	BT1867AP	BYRAM TOWNSHIP (SUSSEX)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2025
18	RECLOSER ON POLE	JC294RBK	RED BANK BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2025
19	RECLOSER ON POLE	BT45027DVT	TOMS RIVER TOWNSHIP (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2025
20	RECLOSER ON POLE	JC634RN	RUMSON BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2025

TOTAL 2025 COSTS 1,105,000

	Company		CIRC	CUIT PROTECTION AND	SECTIONIZATION 2026		
Location Count	LOCATIO	N (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
21	RECLOSER ON POLE	BT598ETN	EATONTOWN BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2026
22	RECLOSER ON POLE	BT70077L	LAMBERTVILLE CITY (HUNTERDON)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2026
23	RECLOSER ON POLE	BT1799PG	PHILLIPSBURG TOWN (WARREN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2026
24	RECLOSER ON POLE	NJ412NT	NEWTON TOWN (SUSSEX)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2026
25	RECLOSER ON POLE	JC778RBK	RED BANK BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2026
26	RECLOSER ON POLE	NJ170RK	ROCKAWAY BOROUGH (MORRIS)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2026

27	RECLOSER ON POLE	UT8ANE		REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2026
TOTAL 202	TOTAL 2026 COSTS					\$ 595,000	

		CIRC	CUIT PROTECTION AND	SECTIONIZATION 2027		
Location Count	LOCATION (Site No.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
28	RECLOSER 217709A54789 ON POLE	LITTLE SILVER BOROUGH (MONMOUTH)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.		\$ 85,000	SECOND HALF OF 2027
29	RECLOSER NJ608LX ON POLE	LOPATCONG TOWNSHIP (WARREN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2027
30	RECLOSER ON POLE BT45012BEC	BEACHWOOD BOROUGH (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2027
31	RECLOSER NJ287DN ON POLE	DENVILLE TOWNSHIP (MORRIS)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2027
TOTAL 2027	COSTS	•			\$ 340,000	

9.	Sompany		CIRC	CUIT PROTECTION AND	SECTIONIZATION 2028		
Location Count	LOCATION (Site N	0.)	TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
32	RECLOSER JC115 ON POLE JC115	SSTR	SOUTH TOMS RIVER BOROUGH (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2028
33	RECLOSER BT888	BPPB	POINT PLEASANT BOROUGH (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2028
34	RECLOSER JC264PF ON POLE	PBT146	POINT PLEASANT BOROUGH (OCEAN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2028
35	RECLOSER NJ210	4RTH	RARITAN TOWNSHIP (HUNTERDON)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2028
36	RECLOSER NJ349F ON POLE NJ349F	-N904	FLEMINGTON BOROUGH (HUNTERDON)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	SECOND HALF OF 2028
TOTAL 2028	COSTS					\$ 425,000	

<u> </u>			CIRC	UIT PROTECTION AND	SECTIONIZATION 2029		
Location Count	LOCATION (Site No.)		TOWNSHIP (COUNTY)	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
37	RECLOSER BT19	WAT552	WEST AMWELL TOWNSHIP (HUNTERDON)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2029
38	RECLOSER BT1	572AP	ALPHA BOROUGH (WARREN)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2029
39	RECLOSER UT30)NTHICK	NEWTON TOWN (SUSSEX)	REPLACE EXISTING FUSES WITH THREE-PHASE ELECTRONIC RECLOSER WITH MICROPROCESSOR PROTECTION AND COMMUNICATION CONTROLS.	MODERNIZED RECLOSER AND CONTROL ENABLE REAL- TIME MONITORING, RECLOSING CAPABILITY IMPROVES RELIABILITY. PROGRAMING RECLOSER TO TRIP ALL THREE PHASES WILL INCREASE SAFETY BY MITIGATING THE POTENTIAL FOR BACK FEED ON 4800V DELTA CIRCUIT.	\$ 85,000	FIRST HALF OF 2029
TOTAL 2029	COSTS					\$ 255,000	

A FirstEnergy C		UNDERG	ROUND CABLE REPL	ACEMENT 2024				
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE		
1		CLINTON TOWN, CLINTON TOWNSHIP, FRANKLIN TOWNSHIP	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 3,244,000	SECOND HALF OF 2024		
TOTAL 2024	COSTS			1.051.151.15.005	\$ 3,244,000			
UNDERGROUND CABLE REPLACEMENT 2025								
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE		
2		MANCHESTER TOWNSHIP	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 3,891,000	FIRST HALF OF 2025		
3		BERKELEY TOWNSHIP, TOMS RIVER TOWNSHIP	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 4,559,625	FIRST HALF OF 2025		
4		ENGLISHTOWN BOROUGH, FREEHOLD BOROUGH, FREEHOLD TOWNSHIP, HOWELL TOWNSHIP, MANALAPAN TOWNSHIP	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 1,854,875	SECOND HALF OF 2025		
TOTAL 2025	COSTS				\$ 10,305,500			
		UNDERG	ROUND CABLE REPL	ACEMENT 2027				
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE		
5		HOPATCONG BOROUGH, JEFFERSON TOWNSHIP, MOUNT ARLINGTON BOROUGH, ROXBURY TOWNSHIP	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 2,231,500	FIRST HALF OF 2027		
6		DENVILLE TOWNSHIP, MORRIS PLAINS BOROUGH, PARSIPPANY TROY HILLS TOWNSHIP	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 2,035,500	SECOND HALF OF 2027		
7		ABERDEEN TOWNSHIP, HAZLET TOWNSHIP. KEANSBURG BOROUGH, KEYPORT BOROUGH,	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 1,995,875	SECOND HALF OF 2027		
,		MATAWAN BOROUGH, OLD BRIDGE TOWNSHIP	WITH GACKED CABLE IN CONDOIT.	DETERMINATIONS OVER TIME.				

	UNDERGROUND CABLE REPLACEMENT 2028										
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE					
8		BARNEGAT TOWNSHIP, BERKELEY TOWNSHIP, LACEY TOWNSHIP, OCEAN TOWNSHIP	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 7,578,750	ALL YEAR					
TOTAL 202	8 COSTS				\$ 7,578,750						
		UNDERG	ROUND CABLE REPL	ACEMENT 2029							
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE					
9		MIDDLETOWN TOWNSHIP, RED BANK BOROUGH	REPLACE UNDERGROUND BARE CONCENTRIC NEUTRAL CABLE WITH JACKED CABLE IN CONDUIT.	IMPROVE RELIABILITY BY MITIGATING UNDERGROUND CABLE FAULTS DUE TO DETERIORATIONS OVER TIME.	\$ 3,221,250	FIRST HALF OF 2029					
TOTAL 2029 COSTS \$ 3,221,250											

		SELECT	TIVE UNDERGROUNDIN	IG 2024		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1		FREEHOLD BOROUGH, FREEHOLD TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 151,250	SECOND HALF OF 2024
2		FREEHOLD BOROUGH, FREEHOLD TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 728,750	SECOND HALF OF 2024
TOTAL 2024	COSTS				\$ 880,000	
		SELECT	TIVE UNDERGROUNDIN	G 2025		
Location						
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
	LOCATION (Substation/Circuit)	TOWNSHIP FREEHOLD BOROUGH, FREEHOLD TOWNSHIP, HOWELL TOWNSHIP, MARLBORO TOWNSHIP	DESCRIPTION LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 728,750	
Count	LOCATION (Substation/Circuit)	FREEHOLD BOROUGH, FREEHOLD TOWNSHIP, HOWELL TOWNSHIP,	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST		SERVICE DATE FIRST HALF OF

		SELECT	TIVE UNDERGROUNDIN	IG 2026		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
5		EAST WINDSOR TOWNSHIP, ENGLISHTOWN BOROUGH, JAMESBURG BOROUGH, MANALAPAN TOWNSHIP, MONROE TOWNSHIP, SPOTSWOOD BOROUGH	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 467,500	FIRST HALF OF 2026
6		CRANBURY TOWNSHIP, MONROE TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 412,500	FIRST HALF OF 2026
TOTAL 2026	COSTS				\$ 880,000	
		SELECT	TIVE UNDERGROUNDIN	IG 2027		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
7		COLTS NECK TOWNSHIP, FARMINGDALE BOROUGH, FREEHOLD TOWNSHIP, HOWELL TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 137,500	FIRST HALF OF 2027
8		EAST WINDSOR TOWNSHIP, JAMESBURG BOROUGH, MONROE TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 220,000	FIRST HALF OF 2027
9	COSTS	JAMESBURG BOROUGH, MONROE TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 467,500 \$ 825,000	FIRST HALF OF 2027

	Company	SELEC1	TIVE UNDERGROUNDIN	IG 2028						
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
10		FARMINGDALE BOROUGH, FREEHOLD BOROUGH, FREEHOLD TOWNSHIP, HOWELL TOWNSHIP, MARLBORO TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 137,500	FIRST HALF OF 2028				
11		CRANBURY TOWNSHIP, EAST WINDSOR TOWNSHIP, JAMESBURG BOROUGH, MONROE TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 412,500	FIRST HALF OF 2028				
12		EAST WINDSOR TOWNSHIP, MONROE TOWNSHIP	LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE PLACED UNDERGROUND.	PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST OUTAGE CATEGORIES.	\$ 220,000	FIRST HALF OF 2028				
TOTAL 2028	COSTS				\$ 770,000					
SELECTIVE UNDERGROUNDING 2029										
		SELEC1	TIVE UNDERGROUNDIN	G 2029						
Location Count	LOCATION (Substation/Circuit)	SELEC1 TOWNSHIP	TIVE UNDERGROUNDIN DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
	LOCATION (Substation/Circuit)				COST ESTIMATE \$ 481,250					
Count	LOCATION (Substation/Circuit)	TOWNSHIP FREEHOLD BOROUGH, FREEHOLD TOWNSHIP, HOWELL TOWNSHIP, WALL TOWNSHIP, WEST WINDSOR	DESCRIPTION LOCATIONS THAT ARE DOUBLE- CIRCUITED SUBSTATION EGRESSES OR DOUBLE CIRCUIT, THREE-PHASE OVERHEAD LINE SECTIONS TO BE	OBJECTIVE PLACE OVERHEAD LINE SECTIONS UNDERGROUND TO REDUCE POTENTIAL CUSTOMER INTERRUPTIONS IN MOST		SERVICE DATE FIRST HALF OF				

J.		DISTRIBUTIO	ON VOLTAGE STANDARDIZA	TION 2025		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1		LONG BRANCH CITY	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 11,146,528	FIRST HALF OF 2025
1		LONG BRANCH CITY	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
1		OCEAN TOWNSHIP,LONG BRANCH CITY,MONMOUTH BEACH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
1		WEST LONG BRANCH BOROUGH,LONG BRANCH CITY,NEPTUNE TOWNSHIP,OCEAN TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
1		LONG BRANCH CITY	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
1		OCEAN TOWNSHIP,LONG BRANCH CITY,MONMOUTH BEACH BOROUGH,WEST LONG BRANCH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
2		FRANKLIN TOWNSHIP,BETHLEHEM TOWNSHIP,GREENWICH TOWNSHIP,ALEXANDRIA TOWNSHIP,BLOOMSBURY BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 19,516,693	FIRST HALF OF 2025
2		HOLLAND TOWNSHIP,ALEXANDRIA TOWNSHIP,FRANKLIN TOWNSHIP,HAMPTON BOROUGH,WASHINGTON TOWNSHIP,BETHLEHEM TOWNSHIP,BLOOMSBURY BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025

A FirstEnergy Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
2		BETHLEHEM TOWNSHIP,HAMPTON BOROUGH,WASHINGTON TOWNSHIP,GREENWICH TOWNSHIP,FRANKLIN TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
2		MILFORD BOROUGH,HAMPTON BOROUGH,MANSFIELD TOWNSHIP,BETHLEHEM TOWNSHIP,WASHINGTON TOWNSHIP,ALEXANDRIA TOWNSHIP,FRANKLIN TOWNSHIP,UNION TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
2		ALEXANDRIA TOWNSHIP,GREENWICH TOWNSHIP,SPARTA TOWNSHIP,FRANKLIN TOWNSHIP,POHATCONG TOWNSHIP,HOLLAND TOWNSHIP,BETHLEHEM TOWNSHIP,BLOOMSBURY BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
3		HOPATCONG BOROUGH,JEFFERSON TOWNSHIP,WHARTON BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 11,205,767	FIRST HALF OF 2025
3		HOPATCONG BOROUGH,JEFFERSON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
3		SPARTA TOWNSHIP, JEFFERSON TOWNSHIP, HOPATCONG BOROUGH, PARSIPPANY TROY HILLS TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
3		ROCKAWAY TOWNSHIP,JEFFERSON TOWNSHIP,MOUNT ARLINGTON BOROUGH,RANDOLPH TOWNSHIP,HOPATCONG BOROUGH,ROXBURY TOWNSHIP,ANDOVER BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
4		FREEHOLD BOROUGH,FREEHOLD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 15,226,719	FIRST HALF OF 2025
4		FREEHOLD BOROUGH,FREEHOLD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
4		FREEHOLD TOWNSHIP,FREEHOLD BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
4		FREEHOLD TOWNSHIP,MANALAPAN TOWNSHIP,FREEHOLD BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
4		OLD BRIDGE TOWNSHIP,MANALAPAN TOWNSHIP,FREEHOLD BOROUGH,FREEHOLD TOWNSHIP,UPPER FREEHOLD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
5		MIDDLETOWN TOWNSHIP,MONMOUTH BEACH BOROUGH,SEA BRIGHT BOROUGH,LONG BRANCH CITY	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 10,223,095	FIRST HALF OF 2025
5		MONMOUTH BEACH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025

	ocation Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
	5		MONMOUTH BEACH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
	5		SEA BRIGHT BOROUGH,MONMOUTH BEACH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
	5		LONG BRANCH CITY,MONMOUTH BEACH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2025
TO	TAL 202	5 COSTS				\$ 67,318,802	

A FirstEnergy Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
		DISTRIBUTIO	ON VOLTAGE STANDARDIZA	TION 2026		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
6		CLINTON TOWNSHIP,CLINTON TOWN,LEBANON BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 30,523,025	FIRST HALF OF 2026
6		CLINTON TOWNSHIP,LEBANON BOROUGH,TEWKSBURY TOWNSHIP,LEBANON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
6		LEBANON BOROUGH,LEBANON TOWNSHIP,TEWKSBURY TOWNSHIP,CLINTON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
6		LEBANON TOWNSHIP,READINGTON TOWNSHIP,TEWKSBURY TOWNSHIP,CALIFON BOROUGH,LEBANON BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
6		TEWKSBURY TOWNSHIP,LEBANON TOWNSHIP,BEDMINSTER TOWNSHIP,BRIDGEWATER TOWNSHIP,BERNARDS TOWNSHIP,READINGTON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
6		CALIFON BOROUGH,BEDMINSTER TOWNSHIP,CLINTON TOWNSHIP,WASHINGTON TOWNSHIP,CHESTER BOROUGH,TEWKSBURY TOWNSHIP,LEBANON TOWNSHIP,CHESTER TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
6		GLEN GARDNER BOROUGH,TEWKSBURY TOWNSHIP,CLINTON TOWNSHIP,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,CALIFON BOROUGH,BETHLEHEM TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
7		BEACHWOOD BOROUGH,TOMS RIVER TOWNSHIP,PINE BEACH BOROUGH,BERKELEY TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 13,542,019	FIRST HALF OF 2026
7		BERKELEY TOWNSHIP,PINE BEACH BOROUGH,BEACHWOOD BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
7		PINE BEACH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
7		BEACHWOOD BOROUGH,BERKELEY TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
7		BERKELEY TOWNSHIP,WARREN TOWNSHIP,OCEAN GATE BOROUGH,PINE BEACH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026
8		LAKEWOOD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 17,634,880	FIRST HALF OF 2026
8		JACKSON TOWNSHIP,LAKEWOOD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2026

TOWNSHIP JACKSON TOWNSHIP A TAKY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING GIRCUITS. B LAKEWOOD TOWNSHIP LAKEWOOD TOWNSHIP LAKEWOOD TOWNSHIP B LAKEWOOD TOWNSHIP B LAKEWOOD TOWNSHIP LAKEWOOD TOWNSHIP B LAKEWOOD TOWNSHIP B LAKEWOOD TOWNSHIP B LAKEWOOD TOWNSHIP B LAKEWOOD TOWNSHIP LAKEWOOD TOWNSHIP B LAKEWOOD TOWNSHIP AT 4KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING GIRCUITS. B LAKEWOOD TOWNSHIP AT 4KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING GIRCUITS. B LAKEWOOD TOWNSHIP AT 4KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING GIRCUITS. B LAKEWOOD TOWNSHIP B LAKEWOOD TOWNSHIP AT 4KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING GIRCUITS. B LAKEWOOD TOWNSHIP B LAKEWOOD TOWNS	Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
BISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP, HOWELL TOWNSHIP, HOWELL TOWNSHIP, WALL TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP, HOWELL TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. BY LAKEWOOD TOWNSHIP AT 4KY OT 12KY AND TIE CAPACITY	8		TOWNSHIP,LAKEWOOD TOWNSHIP,BRICK	DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE	OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND		FIRST HALF OF 2026
B LAKEWOOD TOWNSHIP, HOWELL TOWNSHIP AT A COURSENTLY AT ARE CURRENTLY AT A KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B LAKEWOOD TOWNSHIP LAKEWOOD TOWNSHIP AT A KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORTH HANOVER TOWNSHIP, JACKSON TOWNSHIP, LAKEWOOD TOWNSHIP AT A KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORTH HANOVER TOWNSHIP, JACKSON TOWNSHIP AT A KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORTH HANOVER TOWNSHIP, JACKSON TOWNSHIP AT A KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORTH HANOVER TOWNSHIP AT A CURRENTLY AT A KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORTH HANOVER TOWNSHIP, SANDYSTON TOWNSHIP, MORTH AND TOWNSHIP, MORTH AT A CURRENTLY AT A KY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORUGH TOWNSHIP, SANDYSTON TOWNSHIP, MOUNT ARLINGTON BOROUGH TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORUGH, HOPATCONG BOROUGH DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT AKY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORUGH, HOPATCONG BOROUGH DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT AKY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORUGH, HOPATCONG BOROUGH DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT AKY TO 12KY AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B NORUGH, HOPATCONG BOROUGH BOROUGH, BYRAM TOWNSHIP MAND ALL DE CAPACITY TO THE NEIGHBORING CIRCUITS. B OROUGH, HOPATCONG BOROUGH BYRAM TOWNSHIP MAND ALL DE CAPACITY TO THE NEIGHBORING CIRCUITS. B OROUGH, BYRAM TOWNSHIP MAND ALL DE CAPACITY TO THE NEIGHBORING CIRCUITS. B STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. B STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY AND RESILIENCY. B STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY AND RESILIENCY. B STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY AND RESILIENCY. B STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY AND RESILIENCY. B STANDARD VOLTAGE ALLO	8		LAKEWOOD TOWNSHIP	DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE	OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND		FIRST HALF OF 2026
B LAKEWOOD TOWNSHIP LAKEWOOD TOWNSHIP DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND THE CAPACITY TO THE NEIGHBORING CIRCUITS. NORTH HANOVER TOWNSHIP, JACKSON TOWNSHIP, LAKEWOOD TOWNSHIP B MT ARLINGTON BOROUGH MT ARLINGTON BOROUGH P MT ARLINGTON BOROUGH ROXBURY TOWNSHIP, SANDYSTON TOWNSHIP, MOUNT ARLINGTON BOROUGH ADDITIONAL SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND THE CAPACITY TO THE NEIGHBORING CIRCUITS. B A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. B A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, AT 4KV TO 12KV AND THE CAPACITY TO THE NEIGHBORING CIRCUITS. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. FIRST OWNSHIP ANDOVER BOROUGH, BYRAM TOWNSHIP ANDOVER TOWNSHIP ANDOVER TOWNSHIP ANDOVER DISTRIBUTION SYSTEM THAT ARE CURRENTLY OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY OF THE OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY OF THE OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY OF THE OPERATION OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY OF THE OPERATION OPE	8			DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE	OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND		FIRST HALF OF 2026
B NORTH HANOVER TOWNSHIP, JACKSON TOWNSHIP, JACKSON TOWNSHIP, JACKSON TOWNSHIP, LAKEWOOD TOWNSHIP B MT ARLINGTON BOROUGH MT ARLINGTON BOROUGH MT ARLINGTON BOROUGH B OROUGH, MORNSHIP, MODIT ARLINGTON BOROUGH B OROUGH BOROUGH D ISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. D UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. B OROUGH, MOUNT ARLINGTON BOROUGH B OROUGH, HOPATCONG BOROUGH, HOPATCONG BOROUGH, HOPATCONG BOROUGH, HOPATCONG BOROUGH, HOPATCONG BOROUGH, STANHOPE BOROUGH, STANHOPE BOROUGH, MOPATCONG BOROUGH, BOROUGH, MOPATCONG BOROUGH,	8		LAKEWOOD TOWNSHIP	DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE	OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND		FIRST HALF OF 2026
9 MT ARLINGTON BOROUGH DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. ROXBURY TOWNSHIP, SANDYSTON TOWNSHIP, MOUNT ARLINGTON BOROUGH PROPROME TOWNSHIP, AND ARE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. ANDOVER TOWNSHIP, ANDOVER BOROUGH, HOPATCONG BOROUGH, HOPATCONG BOROUGH, SYSTEM THAT ARE CURRENTLY TO THE NEIGHBORING CIRCUITS. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY AND RESILIENCY. A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY AND RESILIENCY. FIRST OPERATIONAL FLEXIBILITY, SYSTEM THAT ARE CURRENTLY OPERATIONAL FLEXIBILITY, STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY.	8		TOWNSHIP, JACKSON	DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE	OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND		FIRST HALF OF 2026
PIREST ROXBURY TOWNSHIP, SANDYSTON TOWNSHIP, MOUNT ARLINGTON BOROUGH BOROUGH ANDOVER TOWNSHIP, ANDOVER BOROUGH, STANHOPE BOROUGH, STANHOPE BOROUGH, STANHOPE TOWNSHIP MENDHAM DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS. DISTRIBUTION SYSTEM THAT ARE CURRENTLY SYSTEM CAPACITY, AND RESILIENCY. OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY. FIRST OPERATIONAL FLEXIBLE FL	9		MT ARLINGTON BOROUGH	DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE	OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND	\$ 6,806,970	FIRST HALF OF 2026
BOROUGH,HOPATCONG BOROUGH,STANHOPE BOROUGH,BYRAM TOWNSHIP MENDHAM DISTRIBUTION SYSTEM THAT ARE CURRENTLY OPERATIONAL FLEXIBILITY, FIRST	9		TOWNSHIP, MOUNT ARLINGTON	DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE	OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND		FIRST HALF OF 2026
BOROUGH,ROXBURY TOWNSHIP,JEFFERSON TOWNSHIP,MOUNT ARLINGTON BOROUGH TOTAL 2026 COSTS BOROUGH,ROXBURY NEIGHBORING CIRCUITS. RESILIENCY. **RESILIENCY.** **RESILIENCY.** **RESILIENCY.** **RESILIENCY.** **RESILIENCY.** **** **** **** **** **** **** ****			BOROUGH,HOPATCONG BOROUGH,STANHOPE BOROUGH,BYRAM TOWNSHIP,MENDHAM BOROUGH,ROXBURY TOWNSHIP,JEFFERSON TOWNSHIP,MOUNT ARLINGTON	DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE	OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND		FIRST HALF OF 2026

A FirstEnergy Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
		DISTRIBUTION	ON VOLTAGE STANDARDIZA	TION 2027		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
10		LAKEWOOD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 19,527,530	FIRST HALF OF 2027
10		JACKSON TOWNSHIP,LAKEWOOD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
10		LAKEWOOD TOWNSHIP,JACKSON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
10		LAKEWOOD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
10		HOWELL TOWNSHIP, JACKSON TOWNSHIP, TOMS RIVER TOWNSHIP, LAKEWOOD TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
10		MANCHESTER TOWNSHIP,LAKEWOOD TOWNSHIP,JACKSON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
11		MIDDLETOWN TOWNSHIP,HIGHLANDS BOROUGH,ATLANTIC HIGHLANDS BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 12,748,423	FIRST HALF OF 2027
11		ATLANTIC HIGHLANDS BOROUGH,HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
11		ATLANTIC HIGHLANDS BOROUGH,HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
12		HIGHLANDS BOROUGH,ATLANTIC HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 11,321,983	FIRST HALF OF 2027
12		HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP,ATLANTIC HIGHLANDS BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
12		HIGHLANDS BOROUGH,RED BANK BOROUGH,RUMSON BOROUGH,MIDDLETOWN TOWNSHIP,ATLANTIC HIGHLANDS BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
13		SEA BRIGHT BOROUGH,MONMOUTH BEACH BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 8,857,535	FIRST HALF OF 2027
13		SEA BRIGHT BOROUGH,HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
13		MIDDLETOWN TOWNSHIP,MONMOUTH BEACH BOROUGH,SEA BRIGHT BOROUGH,LONG BRANCH CITY	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
13		SEA BRIGHT BOROUGH,MIDDLETOWN TOWNSHIP,HIGHLANDS BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
14		BOONTON TOWNSHIP, DENVILLE TOWNSHIP, ROCKAWAY TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 14,340,155	FIRST HALF OF 2027

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
14		ROCKAWAY TOWNSHIP,WASHINGTON TOWNSHIP,ROCKAWAY BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
14		WEST MILFORD TOWNSHIP,ROCKAWAY BOROUGH,JEFFERSON TOWNSHIP,ROCKAWAY TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2027
TOTAL 202	7 COSTS				\$ 66,795,626	
		DISTRIBUTION	ON VOLTAGE STANDARDIZA	TION 2028		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
15		LEBANON TOWNSHIP,FLEMINGTON BOROUGH,LEBANON BOROUGH,CLINTON TOWNSHIP,READINGTON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 18,645,705	FIRST HALF OF 2028
15		RARITAN TOWNSHIP,READINGTON TOWNSHIP,FRANKLIN TOWNSHIP,LEBANON BOROUGH,CLINTON TOWNSHIP,FLEMINGTON BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2028
15		RARITAN TOWNSHIP,PHILLIPSBURG TOWN,READINGTON TOWNSHIP,FLEMINGTON BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2028
15		CLINTON TOWN,CLINTON TOWNSHIP,FRANKLIN TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2028
16		FRANKLIN TOWNSHIP,SPARTA TOWNSHIP,FRANKLIN BOROUGH,OGDENSBURG BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 30,543,920	FIRST HALF OF 2028

A FirstEnergy Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
16		JEFFERSON TOWNSHIP,FRANKLIN BOROUGH,HARDYSTON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2028
16		FRANKLIN TOWNSHIP,FRANKLIN BOROUGH,HARDYSTON TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2028
16		STILLWATER TOWNSHIP,BYRAM TOWNSHIP,JEFFERSON TOWNSHIP,SPARTA TOWNSHIP,OGDENSBURG BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2028
16		WANTAGE TOWNSHIP, VERNON TOWNSHIP, WEST MILFORD TOWNSHIP, HARDYSTON TOWNSHIP, JEFFERSON TOWNSHIP, HOPATCONG BOROUGH, SPARTA TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2028
16		HARDYSTON TOWNSHIP, VERNON TOWNSHIP, NEWTON TOWN, FRANKLIN BOROUGH, ANDOVER TOWNSHIP, HAMBURG BOROUGH, FRANKLIN TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2028
TOTAL 202	28 COSTS	DISTRIBITIO	ON VOLTAGE STANDARDIZA	TION 2029	\$ 49,189,625	
Location	LOCATION					PROJECTED IN-
Count	(Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	SERVICE DATE
17		ANDOVER TOWNSHIP,BYRAM TOWNSHIP,GREEN TOWNSHIP,ANDOVER BOROUGH,NEWTON TOWN	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 38,375,855	FIRST HALF OF 2029

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
17		GREEN TOWNSHIP, ANDOVER TOWNSHIP, ANDOVER BOROUGH, BYRAM TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
17		NEWTON TOWN,GREEN TOWNSHIP,BYRAM TOWNSHIP,ANDOVER BOROUGH,FRELINGHUYSEN TOWNSHIP,FREDON TOWNSHIP,ANDOVER TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
17		ANDOVER BOROUGH, ANDOVER BOROUGH, ANDOVER TOWNSHIP, ANDOVER TOWNSHIP, JEFFERSON TOWNSHIP, JEFFERSON TOWNSHIP, GREEN TOWNSHIP, GREEN TOWNSHIP, STILL WATER TOWNSHIP, STILL WATER TOWNSHIP, SPARTA TOWNSHIP, SPARTA	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
17		NETCONG BOROUGH,NETCONG BOROUGH,ANDOVER TOWNSHIP,ANDOVER TOWNSHIP,MOUNT OLIVE TOWNSHIP,MOUNT OLIVE TOWNSHIP,BYRAM TOWNSHIP,BYRAM TOWNSHIP,STANHOPE BOROUGH,STANHOPE BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
17		GREEN TOWNSHIP,FRELINGHUYSEN TOWNSHIP,ALLAMUCHY TOWNSHIP,NEWTON TOWN,ANDOVER BOROUGH,OGDENSBURG BOROUGH,ANDOVER TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
18		NETCONG BOROUGH,ROXBURY TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.	\$ 14,101,890	FIRST HALF OF 2029
18		MOUNT OLIVE TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
18		NETCONG BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
18		MOUNT OLIVE TOWNSHIP,ROXBURY TOWNSHIP,CHESTER TOWNSHIP,NETCONG BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
18		NETCONG BOROUGH,STANHOPE BOROUGH,MOUNT OLIVE TOWNSHIP,ROXBURY TOWNSHIP	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
18		STANHOPE BOROUGH,BYRAM TOWNSHIP,MOUNT OLIVE TOWNSHIP,HOPATCONG BOROUGH	UPGRADE SELECTED AREAS OF THE DISTRIBUTION SYSTEM THAT ARE CURRENTLY AT 4KV TO 12KV AND TIE CAPACITY TO THE NEIGHBORING CIRCUITS.	A STANDARD VOLTAGE ALLOWS OPERATIONAL FLEXIBILITY, SYSTEM CAPACITY, AND RESILIENCY.		FIRST HALF OF 2029
TOTAL 202	9 COSTS				\$ 52,477,745	

AT IISLEHeigy Co.	NEW DISTRIBUTION SOURCES 2025							
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE		
1		HARDYSTON TOWNSHIP,HOPATCONG BOROUGH,JEFFERSON TOWNSHIP,SPARTA TOWNSHIP,VERNON TOWNSHIP,WANTAGE TOWNSHIP,WEST MILFORD TOWNSHIP	TRANSFER LOADS FROM ONE EXISTING SOURCES TO A NEW CIRCUIT. ADDS CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY.	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 29,676,941	SECOND HALF OF 2025		
2		STOCKTON BOROUGH,KINGWOOD TOWNSHIP,DELAWARE TOWNSHIP,DELAWARE TOWNSHIP	NEW MOD SUBSTATION INSTALLATION (12.5 KV). ADDS CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 12,742,400	SECOND HALF OF 2025		
3		WHITE TOWNSHIP,OXFORD TOWNSHIP,MANSFIELD TOWNSHIP,BELVIDERE TOWN,LIBERTY TOWNSHIP,WASHINGTON TOWNSHIP,HOPE TOWNSHIP	TRANSFER LOADS FROM ONE EXISTING SOURCES TO A NEW CIRCUIT. ADDS CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY.	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 2,696,196	SECOND HALF OF 2025		
4		GLEN GARDNER BOROUGH,TEWKSBURY TOWNSHIP,CLINTON TOWNSHIP,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,CALIFON BOROUGH,BETHLEHEM TOWNSHIP	TRANSFER LOADS FROM ONE EXISTING SOURCES TO A NEW CIRCUIT. ADDS CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY.	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 3,053,266	SECOND HALF OF 2025		
TOTAL 2025 C	COSTS				\$ 48,168,803			
		NEW I	DISTRIBUTION SOURC	ES 2027				
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE		
5		WASHINGTON TOWNSHIP,INDEPENDENCE TOWNSHIP,WASHINGTON BOROUGH,HACKETTSTOWN TOWN,WASHINGTON TOWNSHIP,MANSFIELD TOWNSHIP,OXFORD TOWNSHIP	NEW MOD SUBSTATION INSTALLATION (12.5 KV). ADDS CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 5,832,400	SECOND HALF OF 2027		

ALEXANDRIA TOWNSHIP, STOCKTON BOROUGH, FRANKLIN ADDING NEW SOURCES OR CREATING TOWNSHIP, FRANKLIN **NEW MOD SUBSTATION** NEW CIRCUITS LIMITS OUTAGE INSTALLATION (12.5 KV). ADDS SECOND HALF OF TOWNSHIP, KINGWOOD 6 \$ 7.199.221 EXPOSURE AND IMPROVE RELIABILITY TOWNSHIP, DELAWARE CAPACITY FOR REDUNDANCY AND 2027 AND RESILIENCY FOR AFFECTED TOWNSHIP, FRENCHTOWN OPERATIONAL FLEXIBILITY CUSTOMERS. BOROUGH, RARITAN TOWNSHIP, CLINTON TOWNSHIP, UNION TOWNSHIP KEYPORT BOROUGH, HAZLET ADDING NEW SOURCES OR CREATING **NEW MOD SUBSTATION** TOWNSHIP, UNION BEACH NEW CIRCUITS LIMITS OUTAGE INSTALLATION (12.5 KV). ADDS SECOND HALF OF 7 BOROUGH.HOLMDEL EXPOSURE AND IMPROVE RELIABILITY 4.765.921 CAPACITY FOR REDUNDANCY AND 2027 TOWNSHIP.OLD BRIDGE AND RESILIENCY FOR AFFECTED **OPERATIONAL FLEXIBILITY TOWNSHIP** CUSTOMERS. TRANSFER LOADS FROM TWO ADDING NEW SOURCES OR CREATING BERKELEY TOWNSHIP, LAKEHURST EXISTING SOURCES TO A NEW NEW CIRCUITS LIMITS OUTAGE SECOND HALF OF 8 BOROUGH, MANCHESTER EXPOSURE AND IMPROVE RELIABILITY 4,072,921 CIRCUIT AND CREATE A NEW TIE. 2027 TOWNSHIP, LACEY TOWNSHIP ADDS CAPACITY FOR REDUNDANCY AND RESILIENCY FOR AFFECTED AND OPERATIONAL FLEXIBILITY. CUSTOMERS. LAKEHURST TRANSFER LOADS FROM TWO ADDING NEW SOURCES OR CREATING BOROUGH, MANCHESTER EXISTING SOURCES TO A NEW NEW CIRCUITS LIMITS OUTAGE SECOND HALF OF 8 TOWNSHIP, TOMS RIVER CIRCUIT AND CREATE A NEW TIE. EXPOSURE AND IMPROVE RELIABILITY 2027 TOWNSHIP, SOUTH TOMS RIVER ADDS CAPACITY FOR REDUNDANCY AND RESILIENCY FOR AFFECTED **BOROUGH** AND OPERATIONAL FLEXIBILITY. CUSTOMERS. BERKELEY TOWNSHIP, TOMS RIVER TOWNSHIP, BAY HEAD BOROUGH, BEACHWOOD TRANSFER LOADS FROM ONE ADDING NEW SOURCES OR CREATING BOROUGH, SEASIDE PARK EXISTING SOURCES TO A NEW NEW CIRCUITS LIMITS OUTAGE BOROUGH, OCEAN SECOND HALF OF 9 CIRCUIT. ADDS CAPACITY FOR EXPOSURE AND IMPROVE RELIABILITY 4.662.421 2027 TOWNSHIP, LAKEWOOD REDUNDANCY AND OPERATIONAL AND RESILIENCY FOR AFFECTED TOWNSHIP, LACEY FLEXIBILITY. CUSTOMERS. TOWNSHIP, OCEAN GATE BOROUGH, MANCHESTER **TOWNSHIP** TRANSFER LOADS FROM TWO ADDING NEW SOURCES OR CREATING BELVIDERE TOWN, HARMONY EXISTING SOURCES TO A NEW NEW CIRCUITS LIMITS OUTAGE TOWNSHIP, LIBERTY SECOND HALF OF 10 CIRCUIT AND CREATE A NEW TIE. EXPOSURE AND IMPROVE RELIABILITY \$ 9,872,500 TOWNSHIP, PHILLIPSBURG 2027 ADDS CAPACITY FOR REDUNDANCY AND RESILIENCY FOR AFFECTED TOWN.WHITE TOWNSHIP AND OPERATIONAL FLEXIBILITY. CUSTOMERS.

BEDMINSTER TOWNSHIP, BELVIDERE TOWN, BLAIRSTOWN TOWNSHIP, BRANCHBURG TRANSFER LOADS FROM TWO ADDING NEW SOURCES OR CREATING TOWNSHIP, DOVER EXISTING SOURCES TO A NEW NEW CIRCUITS LIMITS OUTAGE TOWN, FRELINGHUYSEN SECOND HALF OF 10 CIRCUIT AND CREATE A NEW TIE. EXPOSURE AND IMPROVE RELIABILITY TOWNSHIP, HOPE 2027 ADDS CAPACITY FOR REDUNDANCY AND RESILIENCY FOR AFFECTED TOWNSHIP, INDEPENDENCE AND OPERATIONAL FLEXIBILITY. CUSTOMERS. TOWNSHIP, KNOWLTON TOWNSHIP, LIBERTY TOWNSHIP, PHILLIPSBURG TOWN.WHITE TOWNSHIP BELVIDERE TOWN, HOPE TRANSFER LOADS FROM TWO ADDING NEW SOURCES OR CREATING TOWNSHIP, LIBERTY EXISTING SOURCES TO A NEW NEW CIRCUITS LIMITS OUTAGE TOWNSHIP, MANSFIELD SECOND HALF OF 10 CIRCUIT AND CREATE A NEW TIE. EXPOSURE AND IMPROVE RELIABILITY TOWNSHIP, OXFORD 2027 ADDS CAPACITY FOR REDUNDANCY AND RESILIENCY FOR AFFECTED TOWNSHIP, WASHINGTON AND OPERATIONAL FLEXIBILITY. CUSTOMERS. TOWNSHIP, WHITE TOWNSHIP ANDOVER BOROUGH, ANDOVER TOWNSHIP, BYRAM TRANSFER LOADS FROM ONE ADDING NEW SOURCES OR CREATING TOWNSHIP.HOPATCONG EXISTING SOURCES TO A NEW NEW CIRCUITS LIMITS OUTAGE BOROUGH.JEFFERSON SECOND HALF OF 11 EXPOSURE AND IMPROVE RELIABILITY 11,529,136 CIRCUIT AND CREATE A NEW TIE. TOWNSHIP, MENDHAM 2027 ADDS CAPACITY FOR REDUNDANCY AND RESILIENCY FOR AFFECTED BOROUGH, MOUNT ARLINGTON AND OPERATIONAL FLEXIBILITY. CUSTOMERS. **BOROUGH.ROXBURY** TOWNSHIP.STANHOPE BOROUGH TRANSFER LOADS FROM ONE ADDING NEW SOURCES OR CREATING BYRAM TOWNSHIP, HOPATCONG EXISTING SOURCES TO A NEW NEW CIRCUITS LIMITS OUTAGE SECOND HALF OF BOROUGH, MOUNT OLIVE 11 CIRCUIT AND CREATE A NEW TIE. EXPOSURE AND IMPROVE RELIABILITY 2027 TOWNSHIP, STANHOPE BOROUGH ADDS CAPACITY FOR REDUNDANCY AND RESILIENCY FOR AFFECTED AND OPERATIONAL FLEXIBILITY. CUSTOMERS. **TOTAL 2027 COSTS** 47,934,520 \$ **NEW DISTRIBUTION SOURCES 2029** LOCATION Project # in PROJECTED IN-**COST ESTIMATE TOWNSHIP** DESCRIPTION **OBJECTIVE** (Substation/Circuit) SERVICE DATE **BCA** ATLANTIC HIGHLANDS ADDING NEW SOURCES OR CREATING **NEW MOD SUBSTATION** BOROUGH, HIGHLANDS NEW CIRCUITS LIMITS OUTAGE FIRST HALF OF INSTALLATION (12.5 KV). ADDS 12 BOROUGH, MIDDLETOWN EXPOSURE AND IMPROVE RELIABILITY \$ 7,649,455 CAPACITY FOR REDUNDANCY AND 2029 TOWNSHIP, RED BANK AND RESILIENCY FOR AFFECTED **OPERATIONAL FLEXIBILITY** BOROUGH, RUMSON BOROUGH CUSTOMERS.

A FirstEnergy Cor	npany				
13	LINCOLN PARK BOROUGH,RINGWOOD BOROUGH,WANAQUE BOROUGH,WAYNE TOWNSHIP	NEW MOD SUBSTATION INSTALLATION (12.5 KV). ADDS CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 12,769,320	FIRST HALF OF 2029
13	BLOOMINGDALE BOROUGH,FRANKLIN TOWNSHIP,RINGWOOD BOROUGH,WANAQUE BOROUGH,WAYNE TOWNSHIP	NEW MOD SUBSTATION INSTALLATION (12.5 KV). ADDS CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.		FIRST HALF OF 2029
14	HOPE TOWNSHIP, FRELINGHUYSEN TOWNSHIP, MANSFIELD TOWNSHIP, WHITE TOWNSHIP, LIBERTY TOWNSHIP, HACKETTSTOWN TOWN, HOPEWELL TOWNSHIP, ALLAMUCHY TOWNSHIP, INDEPENDENCE TOWNSHIP, OXFORD TOWNSHIP	NEW MOD SUBSTATION INSTALLATION (12.5 KV). ADDS CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 5,873,421	FIRST HALF OF 2029
15	HOPE TOWNSHIP,KNOWLTON TOWNSHIP,BLAIRSTOWN TOWNSHIP,BEDMINSTER TOWNSHIP,INDEPENDENCE TOWNSHIP,FRELINGHUYSEN TOWNSHIP,PHILLIPSBURG TOWN,WHITE TOWNSHIP,DOVER TOWN,BRANCHBURG TOWNSHIP,BELVIDERE TOWN,LIBERTY TOWNSHIP	ADDITIONAL CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY.	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 2,500,000	FIRST HALF OF 2029
16	WASHINGTON TOWNSHIP,INDEPENDENCE TOWNSHIP,MANSFIELD TOWNSHIP,OXFORD TOWNSHIP,LEBANON TOWNSHIP	ADDITIONAL CAPACITY FOR REDUNDANCY AND OPERATIONAL FLEXIBILITY.	ADDING NEW SOURCES OR CREATING NEW CIRCUITS LIMITS OUTAGE EXPOSURE AND IMPROVE RELIABILITY AND RESILIENCY FOR AFFECTED CUSTOMERS.	\$ 2,500,000	FIRST HALF OF 2029

FRANKLIN TOWNSHIP, MILFORD ADDING NEW SOURCES OR CREATING BOROUGH, LAMBERTVILLE ADDITIONAL CAPACITY FOR NEW CIRCUITS LIMITS OUTAGE CITY, HOLLAND TOWNSHIP, UNION FIRST HALF OF 17 REDUNDANCY AND OPERATIONAL EXPOSURE AND IMPROVE RELIABILITY 2.500.000 TOWNSHIP, HIGH BRIDGE 2029 FLEXIBILITY. AND RESILIENCY FOR AFFECTED BOROUGH.ALEXANDRIA CUSTOMERS. **TOWNSHIP** WHITE TOWNSHIP, OXFORD ADDING NEW SOURCES OR CREATING TOWNSHIP, MANSFIELD ADDITIONAL CAPACITY FOR NEW CIRCUITS LIMITS OUTAGE TOWNSHIP, BELVIDERE FIRST HALF OF 18 REDUNDANCY AND OPERATIONAL EXPOSURE AND IMPROVE RELIABILITY \$ 2.500.000 TOWN, LIBERTY 2029 AND RESILIENCY FOR AFFECTED FLEXIBILITY. TOWNSHIP, WASHINGTON CUSTOMERS. TOWNSHIP, HOPE TOWNSHIP MILLSTONE TOWNSHIP, PLUMSTED TOWNSHIP, NORTH HANOVER ADDING NEW SOURCES OR CREATING NEW MOD SUBSTATION TOWNSHIP, JACKSON NEW CIRCUITS LIMITS OUTAGE INSTALLATION (12.5 KV). ADDS FIRST HALF OF 19 TOWNSHIP, UPPER FREEHOLD EXPOSURE AND IMPROVE RELIABILITY 7,819,871 CAPACITY FOR REDUNDANCY AND 2029 TOWNSHIP, OCEAN AND RESILIENCY FOR AFFECTED OPERATIONAL FLEXIBILITY TOWNSHIP, MANCHESTER CUSTOMERS. **TOWNSHIP** PLUMSTED TOWNSHIP, UPPER FREEHOLD TOWNSHIP, JACKSON ADDING NEW SOURCES OR CREATING **NEW MOD SUBSTATION** TOWNSHIP, CHESTERFIELD NEW CIRCUITS LIMITS OUTAGE FIRST HALF OF INSTALLATION (12.5 KV). ADDS 19 TOWNSHIP, NORTH HANOVER EXPOSURE AND IMPROVE RELIABILITY CAPACITY FOR REDUNDANCY AND 2029 TOWNSHIP, WRIGHTSTOWN AND RESILIENCY FOR AFFECTED OPERATIONAL FLEXIBILITY BOROUGH, NEW HANOVER CUSTOMERS. **TOWNSHIP** TOTAL 2029 COSTS 44,112,067

A Filsterlergy Comp	AUTOMATIC LOOP SCHEMES 2024								
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE			
1		DENVILLE TOWNSHIP,RANDOLPH TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 466,470	SECOND HALF 0F 2024			
1		PARSIPPANY TROY HILLS TOWNSHIP,MORRIS TOWNSHIP,MORRISTOWN TOWN,MENDHAM TOWNSHIP,DENVILLE TOWNSHIP,HARDING TOWNSHIP,RANDOLPH TOWNSHIP,MORRIS PLAINS BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024			
2		MORRIS TOWNSHIP, PARSIPPANY TROY HILLS TOWNSHIP, MORRIS PLAINS BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 113,175	SECOND HALF 0F 2024			
2		PARSIPPANY TROY HILLS TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024			
3		HACKETTSTOWN TOWN,GREENWICH TOWNSHIP,INDEPENDENCE TOWNSHIP,BYRAM TOWNSHIP,MOUNT OLIVE TOWNSHIP,MANSFIELD TOWNSHIP,ALLAMUCHY TOWNSHIP,JACKSON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 374,340	SECOND HALF 0F 2024			

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
3		HACKETTSTOWN TOWN,FRELINGHUYSEN TOWNSHIP,WASHINGTON BOROUGH,ALLAMUCHY TOWNSHIP,GREEN TOWNSHIP,LIBERTY TOWNSHIP,INDEPENDENCE TOWNSHIP,ANDOVER BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
4		CLINTON TOWNSHIP,ALLAMUCHY TOWNSHIP,LEBANON TOWNSHIP,GLEN GARDNER BOROUGH,HAMPTON BOROUGH,CLINTON TOWN,BETHLEHEM TOWNSHIP,HIGH BRIDGE BOROUGH,UNION TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 800,545	SECOND HALF 0F 2024
4		GLEN GARDNER BOROUGH,TEWKSBURY TOWNSHIP,CLINTON TOWNSHIP,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,CALIFON BOROUGH,BETHLEHEM TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
5		ANDOVER TOWNSHIP, ANDOVER BOROUGH, HOPATCONG BOROUGH, STANHOPE BOROUGH, BYRAM TOWNSHIP, MENDHAM BOROUGH, ROXBURY TOWNSHIP, JEFFERSON TOWNSHIP, MOUNT ARLINGTON BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 85,000	SECOND HALF 0F 2024
5		ROXBURY TOWNSHIP,MOUNT ARLINGTON BOROUGH,JEFFERSON TOWNSHIP,HOPATCONG BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
6		MORRIS TOWNSHIP,MENDHAM TOWNSHIP,RANDOLPH TOWNSHIP,MORRISTOWN TOWN,DOVER TOWN,MENDHAM BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 308,690	SECOND HALF 0F 2024
6		MORRIS TOWNSHIP,MENDHAM TOWNSHIP,CHATHAM TOWNSHIP,MORRISTOWN TOWN	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
7		WEST MILFORD TOWNSHIP,ROCKAWAY BOROUGH,JEFFERSON TOWNSHIP,ROCKAWAY TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,788,855	SECOND HALF 0F 2024
7		WANTAGE TOWNSHIP, VERNON TOWNSHIP, WEST MILFORD TOWNSHIP, HARDYSTON TOWNSHIP, JEFFERSON TOWNSHIP, HOPATCONG BOROUGH, SPARTA TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
8		ROXBURY TOWNSHIP, MOUNT OLIVE TOWNSHIP, WASHINGTON TOWNSHIP, JACKSON TOWNSHIP, HACKETTSTOWN TOWN	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 701,430	SECOND HALF 0F 2024
8		CHESTER TOWNSHIP, WASHINGTON TOWNSHIP, MOUNT OLIVE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
9		MORRISTOWN TOWN,HARDING TOWNSHIP,MORRIS TOWNSHIP,MADISON BOROUGH,CHATHAM TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 378,610	SECOND HALF 0F 2024

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
9		HARDING TOWNSHIP,MORRIS TOWNSHIP,MORRISTOWN TOWN	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
10		SPRINGFIELD TOWNSHIP,MILLBURN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 85,000	SECOND HALF 0F 2024
10		MILLBURN TOWNSHIP,NEW PROVIDENCE BOROUGH,SUMMIT CITY,SPRINGFIELD TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
11		BRANCHBURG TOWNSHIP,HILLSBOROUGH TOWNSHIP,CLINTON TOWNSHIP,EAST AMWELL TOWNSHIP,READINGTON TOWNSHIP,RARITAN TOWNSHIP,FLEMINGTON BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 85,000	SECOND HALF 0F 2024
11		RARITAN TOWNSHIP,PHILLIPSBURG TOWN,READINGTON TOWNSHIP,FLEMINGTON BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
60		NEW CKT (DISTRIBUTION NEW SOURCE COMPONENT)	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,883,760	SECOND HALF 0F 2024

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
60		HOPE TOWNSHIP,KNOWLTON TOWNSHIP,BLAIRSTOWN TOWNSHIP,BEDMINSTER TOWNSHIP,INDEPENDENCE TOWNSHIP,FRELINGHUYSEN TOWNSHIP,PHILLIPSBURG TOWN,WHITE TOWNSHIP,DOVER TOWN,BRANCHBURG TOWNSHIP,BELVIDERE TOWN,LIBERTY TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
64		BERKELEY TOWNSHIP,LAKEHURST BOROUGH,MANCHESTER TOWNSHIP,LACEY TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 85,000	SECOND HALF 0F 2024
64		LAKEHURST BOROUGH,MANCHESTER TOWNSHIP,TOMS RIVER TOWNSHIP,SOUTH TOMS RIVER BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
68		LAKEHURST BOROUGH,MANCHESTER TOWNSHIP,TOMS RIVER TOWNSHIP,SOUTH TOMS RIVER BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 3,129,780	SECOND HALF 0F 2024
68		CALIFON BOROUGH,BEDMINSTER TOWNSHIP,CLINTON TOWNSHIP,WASHINGTON TOWNSHIP,CHESTER BOROUGH,TEWKSBURY TOWNSHIP,LEBANON TOWNSHIP,CHESTER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
71		STOCKTON BOROUGH,KINGWOOD TOWNSHIP,DELAWARE TOWNSHIP,FRENCHTOWN BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 6,183,350	SECOND HALF 0F 2024

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
71		DELAWARE TOWNSHIP,STOCKTON BOROUGH,EAST AMWELL TOWNSHIP,WEST AMWELL TOWNSHIP,LAMBERTVILLE CITY	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2024
TOTAL 2024 CO	OSTS				\$ 16,469,005	

A FirstEnergy Comp Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
	AUTOMATIC LOOP SCHEMES 2025									
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
12		WARREN TOWNSHIP,HARDING TOWNSHIP,BERNARDSVILLE BOROUGH,BERNARDS TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,468,450	FIRST HALF OF 2025				
12		MENDHAM BOROUGH,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2025				
13		STILLWATER TOWNSHIP,BYRAM TOWNSHIP,JEFFERSON TOWNSHIP,SPARTA TOWNSHIP,OGDENSBURG BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 5,765,195	FIRST HALF OF 2025				
13		ANDOVER BOROUGH,ANDOVER TOWNSHIP,JEFFERSON TOWNSHIP,GREEN TOWNSHIP,STILLWATER TOWNSHIP,SPARTA TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2025				
14		HAMBURG BOROUGH,HARDYSTON TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP,SUSSEX BOROUGH,VERNON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 668,510	FIRST HALF OF 2025				
14		SUSSEX BOROUGH,HARDYSTON TOWNSHIP,SANDYSTON TOWNSHIP,WANTAGE TOWNSHIP,VERNON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2025				

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
15		LAKEWOOD TOWNSHIP,JACKSON TOWNSHIP,MANCHESTER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 678,515	FIRST HALF OF 2025
15		JACKSON TOWNSHIP,FREEHOLD BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2025
16		HARDYSTON TOWNSHIP, VERNON TOWNSHIP, NEWTON TOWN, FRANKLIN BOROUGH, ANDOVER TOWNSHIP, HAMBURG BOROUGH, FRANKLIN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,273,655	SECOND HALF 0F 2025
16		WANTAGE TOWNSHIP,HAMBURG BOROUGH,VERNON TOWNSHIP,HARDYSTON TOWNSHIP,HIGH BRIDGE BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
17		LAKEWOOD TOWNSHIP,JACKSON TOWNSHIP,NORTH HANOVER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 858,750	SECOND HALF 0F 2025
17		NORTH HANOVER TOWNSHIP,JACKSON TOWNSHIP,LAKEWOOD TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
61		KEYPORT BOROUGH,HAZLET TOWNSHIP,UNION BEACH BOROUGH,HOLMDEL TOWNSHIP,OLD BRIDGE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 680,500	SECOND HALF 0F 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
61		HAZLET TOWNSHIP,UNION BEACH BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
62		HAZLET TOWNSHIP,UNION BEACH BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 85,000	SECOND HALF 0F 2025
62		NEW CKT (DISTRIBUTION NEW SOURCE COMPONENT)	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
63		LAKEHURST BOROUGH,MANCHESTER TOWNSHIP,TOMS RIVER TOWNSHIP,SOUTH TOMS RIVER BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 255,000	SECOND HALF 0F 2025
63		NEW CKT (DISTRIBUTION NEW SOURCE COMPONENT)	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
65		PLUMSTED TOWNSHIP,UPPER FREEHOLD TOWNSHIP,JACKSON TOWNSHIP,CHESTERFIELD TOWNSHIP,NORTH HANOVER TOWNSHIP,WRIGHTSTOWN BOROUGH,NEW HANOVER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,174,000	SECOND HALF 0F 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
65		JACKSON TOWNSHIP,NORTH HANOVER TOWNSHIP,SPRINGFIELD TOWNSHIP,PLUMSTED TOWNSHIP,NEW HANOVER TOWNSHIP,WRIGHTSTOWN BOROUGH,OCEAN TOWNSHIP,CHESTERFIELD TOWNSHIP,MANSFIELD TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
66		NEW CKT (DISTRIBUTION NEW SOURCE COMPONENT)	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,556,290	SECOND HALF 0F 2025
66		JEFFERSON TOWNSHIP,ROCKAWAY TOWNSHIP,SPARTA TOWNSHIP,WAYNE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
67		GLEN GARDNER BOROUGH,TEWKSBURY TOWNSHIP,CLINTON TOWNSHIP,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,CALIFON BOROUGH,BETHLEHEM TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 255,000	SECOND HALF 0F 2025
67		MOUNT OLIVE TOWNSHIP,WASHINGTON TOWNSHIP,CALIFON BOROUGH,CHESTER BOROUGH,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,CHESTER TOWNSHIP,WASHINGTON BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
69		WHITE TOWNSHIP,OXFORD TOWNSHIP,MANSFIELD TOWNSHIP,BELVIDERE TOWN,LIBERTY TOWNSHIP,WASHINGTON TOWNSHIP,HOPE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 785,000	SECOND HALF 0F 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
69		WHITE TOWNSHIP,WASHINGTON TOWNSHIP,OXFORD TOWNSHIP,WASHINGTON BOROUGH,WASHINGTON TOWNSHIP,LEBANON TOWNSHIP,HARMONY TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
70		HOPE TOWNSHIP, FRELINGHUYSEN TOWNSHIP, MANSFIELD TOWNSHIP, WHITE TOWNSHIP, LIBERTY TOWNSHIP, HACKETTSTOWN TOWN, HOPEWELL TOWNSHIP, ALLAMUCHY TOWNSHIP, INDEPENDENCE TOWNSHIP, OXFORD TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 3,383,760	SECOND HALF 0F 2025
70		NEW CKT (DISTRIBUTION NEW SOURCE COMPONENT)	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF 0F 2025
TOTAL 2025 CO	STS	ALITOMATIC	C LOOP SCHEMES 20	200	\$ 18,887,625	
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
18		MARLBORO TOWNSHIP,MIDDLETOWN TOWNSHIP,COLTS NECK TOWNSHIP,HOLMDEL TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,094,355	FIRST HALF OF 2026
18		HOLMDEL TOWNSHIP,COLTS NECK TOWNSHIP,FREEHOLD TOWNSHIP,MARLBORO TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2026

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
19		EAST WINDSOR TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,050,525	FIRST HALF OF 2026
19		EAST WINDSOR TOWNSHIP,WEST WINDSOR TOWNSHIP,ROBBINSVILLE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2026
20		HOLMDEL TOWNSHIP,HAZLET TOWNSHIP,KEYPORT BOROUGH,UNION BEACH BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,220,050	FIRST HALF OF 2026
20		HAZLET TOWNSHIP,HOLMDEL TOWNSHIP,KEANSBURG BOROUGH,MIDDLETOWN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2026
21		SHREWSBURY BOROUGH,EATONTOWN BOROUGH,SHREWSBURY TOWNSHIP,TINTON FALLS BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 372,040	FIRST HALF OF 2026
21		EATONTOWN BOROUGH,SHREWSBURY BOROUGH,SHREWSBURY TOWNSHIP,TINTON FALLS BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2026
22		BRANCHBURG TOWNSHIP,CLINTON TOWNSHIP,ALLAMUCHY TOWNSHIP,READINGTON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 2,374,420	SECOND HALF OF 2026

BOROUGH, ENDOGEMATER TOWNSHIP, HARDING TOWNSHIP BERNARDS TOWNSHIP, BEDMINSTER BERNARDS TOWNSHIP, BEDMINSTER TOWNSHIP, BRIDGEWATER TOWNSHIP, BRIDGEWATER TOWNSHIP, TOMS RIVER TOWNSHIP PREEHOLD BOROUGH, FREEHOLD TOWNSHIP, HOWELL TOWNSHIP, HOWELL BOROUGH, WALL TOWNSHIP 24 COLTS NECK TOWNSHIP, NEPTUNE TOWNSHIP, HOWELL TOWNSHIP, HOWELL TOWNSHIP, HOWELL TOWNSHIP, HOWELL TOWNSHIP, HOWELL TOWNSHIP, HOWELL TOWNSHIP, NEPTUNE TOWNSHIP, HOWELL TOWNSHIP, HOWELL TOWNSHIP, HOWELL TOWNSHIP, FARMINGDALE BOROUGH TRANSFER DURING OUTAGE EVENTS. INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN DUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
BEDMINSTER TOWNSHIP, BERNARDS TOWNSHIP, BERNARDS SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS. BERNARDS TOWNSHIP, BEDMINSTER TOWNSHIP, BRIDGEWATER TOWNSHIP, FORM RIVER TOWNSHIP 24 PRECEDERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS. INSTALL	22		TOWNSHIP,LEBANON BOROUGH,CLINTON TOWNSHIP,RARITAN	SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE	DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN		SECOND HALF OF 2026
BERNARDS TOWNSHIP,BEDMINSTER TOWNSHIP,BEDMINSTER TOWNSHIP,BEDMINSTER TOWNSHIP,BEDMINSTER TOWNSHIP,BEDMINSTER TOWNSHIP,BEDMINSTER TOWNSHIP,TOMS RIVER TOWNSHIP 24 FREEHOLD BOROUGH,FREEHOLD TOWNSHIP,HOWELL TOWNSHIP,HOWELL TOWNSHIP,NEPTUNE TOWNSHIP,HOWELL TOWNSHIP,TINTON FALLS BOROUGH,WALL TOWNSHIP, TINTON FALLS BOROUGH,WALL TOWNSHIP, TOWNSHIP, TOWNSHIP, TOWNSHIP, TOWNSHIP, TOWNSHIP, TOWNSHIP, TOWNSHIP, TOWNSHIP, FARMINGDALE BOROUGH 25 MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MARLBORO TOWNSHIP 10 MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MARLBORO TOWNSHIP 25 MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MARLBORO TOWNSHIP 26 MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MARLBORO TOWNSHIP 27 MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MARLBORO TOWNSHIP 26 MANALAPAN TOWNSHIP 27 MANALAPAN TOWNSHIP 26 MANALAPAN TOWNSHIP 27 MANALAPAN	23		TOWNSHIP,BERNARDSVILLE BOROUGH,BRIDGEWATER	SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE	DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN	\$ 1,913,615	SECOND HALF OF 2026
FREEHOLD BOROUGH,FREEHOLD TOWNSHIP,HOWELL TOWNSHIP,HOWELL TOWNSHIP,FARMINGDALE BOROUGH,WALL TOWNSHIP 24 COLTS NECK TOWNSHIP,NEPTUNE TOWNSHIP,HOWELL TOWNSHIP, INITION FALLS BOROUGH,WALL TOWNSHIP,FARMINGDALE BOROUGH BOROUGH,WALL TOWNSHIP,FARMINGDALE BOROUGH TOWNSHIP,FARMINGDALE BOROUGH MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MARLBORO TOWNSHIP DINSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED OUTAGE. IMPROVE RESILIENCY VIA DISTRIBUTION	23		TOWNSHIP,BRIDGEWATER	SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE	DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN		SECOND HALF OF 2026
24 COLTS NECK TOWNSHIP,NEPTUNE TOWNSHIP,NEPTUNE TOWNSHIP,HOWELL TOWNSHIP,TINTON FALLS BOROUGH,WALL TOWNSHIP,FARMINGDALE BOROUGH TOWNSHIP,FARMINGDALE BOROUGH INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOOP TRANSFER DURING OUTAGE EVENTS. MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MARLBORO TOWNSHIP MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH	24		TOWNSHIP,HOWELL TOWNSHIP,FARMINGDALE	SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE	DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN	\$ 2,555,920	SECOND HALF OF 2026
SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS. SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS. INSTALL AUTOMATIC LOOP	24		TOWNSHIP,HOWELL TOWNSHIP,TINTON FALLS BOROUGH,WALL	SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE	DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN		SECOND HALF OF 2026
INSTALL AUTOMATIC LOOP	25		·	SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE	DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN	\$ 544,570	SECOND HALF OF 2026
MARLBORO TOWNSHIP,MANALAPAN TOWNSHIP,FREEHOLD TOWNSHIP,MONROE TOWNSHIP,ENGLISHTOWN BOROUGH TOTAL 2026 COSTS MARLBORO TOWNSHIP,MANALAPAN TOWNSHIP,FREEHOLD TOWNSHIP,FREEHOLD TOWNSHIP,FREEHOLD TOWNSHIP,MONROE TOWNSHIP,ENGLISHTOWN BOROUGH TOWNSHIP,ENGLISHTOWN BOROUGH TOWNSHIP,ENGLISHTOWN BOROUGH TOWNSHIP,ENGLISHTOWN BOROUGH TOWNSHIP,ENGLISHTOWN BOROUGH TRANSFER DURING OUTAGE EVENTS. MIMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	-		TOWNSHIP,FREEHOLD TOWNSHIP,MONROE	SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE	REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN		SECOND HALF OF 2026

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
	AUTOMATIC LOOP SCHEMES 2027									
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
26		HAZLET TOWNSHIP,HOLMDEL TOWNSHIP,ABERDEEN TOWNSHIP,MATAWAN BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,433,375	FIRST HALF OF 2027				
26		HOLMDEL TOWNSHIP,MIDDLETOWN TOWNSHIP,MATAWAN BOROUGH,FARMINGDALE BOROUGH,ABERDEEN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027				
27		SPOTSWOOD BOROUGH,EAST BRUNSWICK TOWNSHIP,SOUTH BRUNSWICK TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 255,000	FIRST HALF OF 2027				
27		JAMESBURG BOROUGH,EAST BRUNSWICK TOWNSHIP,CRANBURY TOWNSHIP,SOUTH BRUNSWICK TOWNSHIP,HELMETTA BOROUGH,MONROE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027				
28		OLD BRIDGE TOWNSHIP,HOLMDEL TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 170,000	FIRST HALF OF 2027				
28		SOUTH AMBOY CITY,OLD BRIDGE TOWNSHIP,MATAWAN BOROUGH,SAYREVILLE BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027				

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
29		MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,OLD BRIDGE TOWNSHIP,MARLBORO TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 255,000	FIRST HALF OF 2027
29		MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MARLBORO TOWNSHIP,FREEHOLD TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
30		EAST WINDSOR TOWNSHIP,UPPER FREEHOLD TOWNSHIP,MILLSTONE TOWNSHIP,ROBBINSVILLE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 2,519,825	FIRST HALF OF 2027
30		EAST WINDSOR TOWNSHIP,HIGHTSTOWN BOROUGH,WEST WINDSOR TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
31		PEMBERTON TOWNSHIP,WOODLAND TOWNSHIP,PEMBERTON BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,146,450	FIRST HALF OF 2027
31		PEMBERTON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
32		BERKELEY TOWNSHIP,SOUTH TOMS RIVER BOROUGH,TOMS RIVER TOWNSHIP,LONG BRANCH CITY	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 170,000	FIRST HALF OF 2027

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
32		TOMS RIVER TOWNSHIP, SOUTH TOMS RIVER BOROUGH, ISLAND HEIGHTS BOROUGH, SEASIDE PARK BOROUGH, BERKELEY TOWNSHIP, SAYREVILLE BOROUGH, OCEAN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
33		OCEAN GATE BOROUGH,BAY HEAD BOROUGH,BERKELEY TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 170,000	FIRST HALF OF 2027
33		BERKELEY TOWNSHIP,WARREN TOWNSHIP,OCEAN GATE BOROUGH,PINE BEACH BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
34		TOMS RIVER TOWNSHIP,SOUTH TOMS RIVER BOROUGH,MANCHESTER TOWNSHIP,LAKEWOOD TOWNSHIP,BERKELEY TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 535,800	FIRST HALF OF 2027
34		TOMS RIVER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
35		LONG BRANCH CITY,OCEAN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 343,420	FIRST HALF OF 2027
35		OCEAN TOWNSHIP,LONG BRANCH CITY,MONMOUTH BEACH BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
36		TOMS RIVER TOWNSHIP,BRICK TOWNSHIP,MANTOLOKING BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 170,000	FIRST HALF OF 2027
36		TOMS RIVER TOWNSHIP,BRICK TOWNSHIP,LAVALLETTE BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
37		OCEAN TOWNSHIP,POINT PLEASANT BOROUGH,BRICK TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 170,000	FIRST HALF OF 2027
37		BRICK TOWNSHIP,TOMS RIVER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
38		POINT PLEASANT BOROUGH,BAY HEAD BOROUGH,POINT PLEASANT BEACH BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 272,120	FIRST HALF OF 2027
38		POINT PLEASANT BOROUGH,POINT PLEASANT BEACH BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
39		MANASQUAN BOROUGH,BRIELLE BOROUGH,MANALAPAN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 105,225	FIRST HALF OF 2027

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
39		WALL TOWNSHIP, MANASQUAN BOROUGH, BRIELLE BOROUGH, MANALAPAN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
40		WALL TOWNSHIP,MANASQUAN BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 238,050	FIRST HALF OF 2027
40		BRIELLE BOROUGH,MANASQUAN BOROUGH,MANALAPAN TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2027
41		NETCONG BOROUGH,STANHOPE BOROUGH,MOUNT OLIVE TOWNSHIP,ROXBURY TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 2,140,039	SECOND HALF OF 2027
41		MOUNT OLIVE TOWNSHIP,ROXBURY TOWNSHIP,CHESTER TOWNSHIP,NETCONG BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2027
42		BERNARDS TOWNSHIP,MORRIS TOWNSHIP,MORRISTOWN TOWN,CHATHAM TOWNSHIP,HARDING TOWNSHIP,BERNARDSVILLE BOROUGH,BEDMINSTER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 2,052,788	SECOND HALF OF 2027
42		BERNARDS TOWNSHIP,BRIDGEWATER TOWNSHIP,HARDING TOWNSHIP,BERNARDSVILLE BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2027

A FirstEnergy Comp	A FirstEnergy Company						
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE	
43		MOUNT OLIVE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 4,377,161	SECOND HALF OF 2027	
43		NETCONG BOROUGH,ANDOVER TOWNSHIP,MOUNT OLIVE TOWNSHIP,BYRAM TOWNSHIP,STANHOPE BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2027	
TOTAL 2027 CO	STS				\$ 16,524,253		
		AUTOMATIC	C LOOP SCHEMES 20	028			
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE	
44		TEWKSBURY TOWNSHIP,LEBANON TOWNSHIP,BEDMINSTER TOWNSHIP,BRIDGEWATER TOWNSHIP,BERNARDS TOWNSHIP,READINGTON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 8,326,693	FIRST HALF OF 2028	
44		BRANCHBURG TOWNSHIP,CLINTON TOWNSHIP,ALLAMUCHY TOWNSHIP,READINGTON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2028	
45		BERNARDS TOWNSHIP,FAR HILLS BOROUGH,BEDMINSTER TOWNSHIP,BERNARDSVILLE BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 255,000	SECOND HALF OF 2028	
45		BERNARDS TOWNSHIP,BEDMINSTER TOWNSHIP,BRIDGEWATER TOWNSHIP,TOMS RIVER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2028	

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
46		MOUNT OLIVE TOWNSHIP,CHESTER TOWNSHIP,WASHINGTON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 300,000	SECOND HALF OF 2028
46		CHESTER TOWNSHIP,WASHINGTON TOWNSHIP,MOUNT OLIVE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2028
47		BERNARDSVILLE BOROUGH,MENDHAM TOWNSHIP,FAR HILLS BOROUGH,BERNARDS TOWNSHIP,BEDMINSTER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 357,000	SECOND HALF OF 2028
47		MENDHAM BOROUGH,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2028
48		BERNARDSVILLE BOROUGH,BERNARDS TOWNSHIP,MENDHAM BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 300,000	SECOND HALF OF 2028
48		BERNARDSVILLE BOROUGH,BERNARDS TOWNSHIP,BRIDGEWATER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2028
49		SANDYSTON TOWNSHIP,MONTAGUE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 336,000	SECOND HALF OF 2028

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
49		MONTAGUE TOWNSHIP,SPOTSWOOD BOROUGH,SANDYSTON TOWNSHIP,BRANCHVILLE BOROUGH,WALPACK TOWNSHIP,SUSSEX BOROUGH,FRANKFORD TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2028
50		MOUNT OLIVE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 255,000	SECOND HALF OF 2028
50		ROXBURY TOWNSHIP,MOUNT OLIVE TOWNSHIP,WASHINGTON TOWNSHIP,JACKSON TOWNSHIP,HACKETTSTOWN TOWN	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2028
51		HAMPTON TOWNSHIP,SPARTA TOWNSHIP,WANTAGE TOWNSHIP,ROXBURY TOWNSHIP,ANDOVER BOROUGH,ANDOVER TOWNSHIP,LAFAYETTE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 435,000	SECOND HALF OF 2028
51		SPARTA TOWNSHIP,LAFAYETTE TOWNSHIP,STILLWATER TOWNSHIP,ANDOVER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2028
52		RANDOLPH TOWNSHIP,DENVILLE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 255,000	SECOND HALF OF 2028
52		ROCKAWAY TOWNSHIP,WASHINGTON TOWNSHIP,ROCKAWAY BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		SECOND HALF OF 2028
TOTAL 2028 CO	STS				\$ 10,819,693	

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
		AUTOMATIC	C LOOP SCHEMES 20)29		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
53		NEWTON TOWN,BERNARDS TOWNSHIP,ANDOVER TOWNSHIP,FREDON TOWNSHIP,ANDOVER BOROUGH,HAMPTON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 1,579,374	FIRST HALF OF 2029
53		BERNARDS TOWNSHIP,SPARTA TOWNSHIP,NEWTON TOWN,HAMPTON TOWNSHIP,FREDON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2029
54		WASHINGTON TOWNSHIP,ROXBURY TOWNSHIP,LEBANON TOWNSHIP,HACKETTSTOWN TOWN,MOUNT OLIVE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 672,211	FIRST HALF OF 2029
54		MOUNT OLIVE TOWNSHIP,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,ROXBURY TOWNSHIP,HACKETTSTOWN TOWN	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2029
55		BRANCHVILLE BOROUGH,MONTAGUE TOWNSHIP,FRANKFORD TOWNSHIP,WANTAGE TOWNSHIP,VERNON TOWNSHIP,STOCKTON BOROUGH,SUSSEX BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 2,486,776	FIRST HALF OF 2029
55		HAMBURG BOROUGH,HAMPTON TOWNSHIP,SUSSEX BOROUGH,HARDYSTON TOWNSHIP,WANTAGE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2029

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
56		MENDHAM BOROUGH,CHESTER TOWNSHIP,RANDOLPH TOWNSHIP,CHESTER BOROUGH,MENDHAM TOWNSHIP,WASHINGTON TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 3,792,458	FIRST HALF OF 2029
56		WASHINGTON TOWNSHIP,PHILLIPSBURG TOWN,MOUNT OLIVE TOWNSHIP,CHESTER TOWNSHIP,CHESTER BOROUGH,SUMMIT CITY	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2029
57		ANDOVER TOWNSHIP,ANDOVER BOROUGH,LAFAYETTE TOWNSHIP,NEWTON TOWN,SPARTA TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 305,000	FIRST HALF OF 2029
57		ANDOVER TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2029
58		ROXBURY TOWNSHIP,DOVER TOWN,WHARTON BOROUGH,ROCKAWAY TOWNSHIP,ROCKAWAY BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 390,000	FIRST HALF OF 2029
58		ROCKAWAY TOWNSHIP,ROCKAWAY BOROUGH	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2029
59		HAMPTON TOWNSHIP,FREDON TOWNSHIP,FRANKFORD TOWNSHIP,NEWTON TOWN,ANDOVER TOWNSHIP,LAFAYETTE TOWNSHIP	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.	\$ 393,000	FIRST HALF OF 2029

Location Count	t LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
59		HAMPTON TOWNSHIP, NEWTON TOWN	INSTALL AUTOMATIC LOOP SCHEMES WITH ADVANCED RECLOSERS AND SCADA TO ENABLE AUTOMATIC LOAD TRANSFER DURING OUTAGE EVENTS.	IMPROVE RESILIENCY VIA DISTRIBUTION AUTOMATION TO REDUCE THE AMOUNT OF CUSTOMERS EXPERIENCING AN OUTAGE.		FIRST HALF OF 2029
TOTAL 2029 C	OSTS				\$ 9,618,819	

A FirstEnergy (Сотрану	DISTRIBUTION	ON AUTOMATION EN	NABLEMENT 2024		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1		RANDOLPH TOWNSHIP, DENVILLE TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	SECOND HALF OF 2024
2		CHATHAM TOWNSHIP,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,BRIDGEWATER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 1,166,040	SECOND HALF OF 2024
2		BERNARDSVILLE BOROUGH,BERNARDS TOWNSHIP,BRIDGEWATER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
2		BERNARDSVILLE BOROUGH,BERNARDS TOWNSHIP,MENDHAM BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
2		BERNARDSVILLE BOROUGH,MENDHAM TOWNSHIP,FAR HILLS BOROUGH,BERNARDS TOWNSHIP,BEDMINSTER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
3		MENDHAM BOROUGH,CHESTER TOWNSHIP,RANDOLPH TOWNSHIP,CHESTER BOROUGH,MENDHAM TOWNSHIP,WASHINGTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	SECOND HALF OF 2024

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
3		CHESTER BOROUGH,MENDHAM TOWNSHIP,CHESTER TOWNSHIP,MENDHAM BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
3		CHESTER BOROUGH,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,CHESTER TOWNSHIP,WASHINGTON BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
4		MOUNT OLIVE TOWNSHIP,LEBANON TOWNSHIP,WASHINGTON TOWNSHIP,ROXBURY TOWNSHIP,HACKETTSTOWN TOWN	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	SECOND HALF OF 2024
4		WASHINGTON TOWNSHIP,ROXBURY TOWNSHIP,LEBANON TOWNSHIP,HACKETTSTOWN TOWN,MOUNT OLIVE TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
5		NEWTON TOWN,BERNARDS TOWNSHIP,ANDOVER TOWNSHIP,FREDON TOWNSHIP,ANDOVER BOROUGH,HAMPTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	SECOND HALF OF 2024
6		ROXBURY TOWNSHIP,DOVER TOWN,WHARTON BOROUGH,ROCKAWAY TOWNSHIP,ROCKAWAY BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	SECOND HALF OF 2024

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
7		MOUNT OLIVE TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	SECOND HALF OF 2024
7		MOUNT OLIVE TOWNSHIP,CHESTER TOWNSHIP,WASHINGTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
8		ROCKAWAY TOWNSHIP,ROCKAWAY BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	SECOND HALF OF 2024
9		ROCKAWAY TOWNSHIP,ROCKAWAY BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	SECOND HALF OF 2024
10		PARSIPPANY TROY HILLS TOWNSHIP,DENVILLE TOWNSHIP,MOUNTAIN LAKES BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 1,375,899	SECOND HALF OF 2024
10		HANOVER TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
10		MOUNTAIN LAKES BOROUGH,PARSIPPANY TROY HILLS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
10		RANDOLPH TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP,DENVILLE TOWNSHIP,BOONTON TOWNSHIP,WHITE TOWNSHIP,MORRIS PLAINS BOROUGH,MOUNTAIN LAKES BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
10		PARSIPPANY TROY HILLS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2024
11		BERNARDS TOWNSHIP,BRIDGEWATER TOWNSHIP,HARDING TOWNSHIP,BERNARDSVILLE BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	SECOND HALF OF 2024
TOTAL 2024	4 COSTS	DISTRIBUTION	ON AUTOMATION EN	JABLEMENT 2025	\$ 8,209,542	
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
12		BERNARDS TOWNSHIP,BEDMINSTER TOWNSHIP,BRIDGEWATER TOWNSHIP,TOMS RIVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	FIRST HALF OF 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
12		TEWKSBURY TOWNSHIP,LEBANON TOWNSHIP,BEDMINSTER TOWNSHIP,BRIDGEWATER TOWNSHIP,BERNARDS TOWNSHIP,READINGTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
12		BERNARDS TOWNSHIP,FAR HILLS BOROUGH,BEDMINSTER TOWNSHIP,BERNARDSVILLE BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
13		PARSIPPANY TROY HILLS TOWNSHIP,MORRIS PLAINS BOROUGH,DENVILLE TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 1,166,040	FIRST HALF OF 2025
13		DENVILLE TOWNSHIP,RANDOLPH TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
13		MORRIS PLAINS BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
13		PARSIPPANY TROY HILLS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
14		DENVILLE TOWNSHIP,MORRIS PLAINS BOROUGH,PARSIPPANY TROY HILLS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	FIRST HALF OF 2025
14		PARSIPPANY TROY HILLS TOWNSHIP,MORRIS TOWNSHIP,MORRISTOWN TOWN,MENDHAM TOWNSHIP,DENVILLE TOWNSHIP,HARDING TOWNSHIP,RANDOLPH TOWNSHIP,MORRIS PLAINS BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
14		DENVILLE TOWNSHIP,RANDOLPH TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
15		SANDYSTON TOWNSHIP,MONTAGUE TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	FIRST HALF OF 2025
15		MONTAGUE TOWNSHIP,SPOTSWOOD BOROUGH,SANDYSTON TOWNSHIP,BRANCHVILLE BOROUGH,WALPACK TOWNSHIP,SUSSEX BOROUGH,FRANKFORD TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
16		BERKELEY TOWNSHIP,SOUTH TOMS RIVER BOROUGH,TOMS RIVER TOWNSHIP,LONG BRANCH CITY	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 1,156,040	FIRST HALF OF 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
16		BERKELEY TOWNSHIP, TOMS RIVER TOWNSHIP, SOUTH TOMS RIVER BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
16		TOMS RIVER TOWNSHIP,SOUTH TOMS RIVER BOROUGH,MANCHESTER TOWNSHIP,LAKEWOOD TOWNSHIP,BERKELEY TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
16		OCEAN TOWNSHIP, TOMS RIVER TOWNSHIP, LONG BRANCH CITY, BERKELEY TOWNSHIP, SOUTH TOMS RIVER BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2025
17		ANDOVER TOWNSHIP,ANDOVER BOROUGH,LAFAYETTE TOWNSHIP,NEWTON TOWN,SPARTA TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	SECOND HALF OF 2025
17		ANDOVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025
18		BRICK TOWNSHIP,MANTOLOKING BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	SECOND HALF OF 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
18		TOMS RIVER TOWNSHIP,BRICK TOWNSHIP,MANTOLOKING BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025
18		BRICK TOWNSHIP,MANTOLOKING BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025
19		JACKSON TOWNSHIP,NORTH HANOVER TOWNSHIP,SPRINGFIELD TOWNSHIP,PLUMSTED TOWNSHIP,NEW HANOVER TOWNSHIP,WRIGHTSTOWN BOROUGH,OCEAN TOWNSHIP,CHESTERFIELD TOWNSHIP,MANSFIELD TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	SECOND HALF OF 2025
19		NORTH HANOVER TOWNSHIP,NEW HANOVER TOWNSHIP,WRIGHTSTOWN BOROUGH,PEMBERTON TOWNSHIP,PEMBERTON BOROUGH,SPRINGFIELD TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025
19		NEW HANOVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
20		PEAPACK AND GLADSTONE BOROUGH,HOLLAND TOWNSHIP,MORRISTOWN TOWN,RANDOLPH TOWNSHIP,CHESTER TOWNSHIP,MORRIS TOWNSHIP,MENDHAM TOWNSHIP,MENDHAM	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	SECOND HALF OF 2025
20		MORRIS TOWNSHIP,MENDHAM TOWNSHIP,RANDOLPH TOWNSHIP,MORRISTOWN TOWN,DOVER TOWN,MENDHAM BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025
21		PEAPACK AND GLADSTONE BOROUGH,BERNARDSVILLE BOROUGH,CHESTER TOWNSHIP,BERNARDS TOWNSHIP,MENDHAM BOROUGH,MENDHAM TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	SECOND HALF OF 2025
21		FLEMINGTON BOROUGH,MENDHAM TOWNSHIP,MENDHAM BOROUGH,SUMMIT CITY,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,HARDING TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025
22		HANOVER TOWNSHIP,MORRISTOWN TOWN,EAST HANOVER TOWNSHIP,MORRIS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 1,166,040	SECOND HALF OF 2025
22		MORRIS TOWNSHIP,FLORHAM PARK BOROUGH,MORRISTOWN TOWN	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025

A FirstEnergy (A FirstEnergy Company						
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE	
22		MORRIS TOWNSHIP,MENDHAM TOWNSHIP,CHATHAM TOWNSHIP,MORRISTOWN TOWN	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025	
22		MORRISTOWN TOWN,CHATHAM TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2025	
TOTAL 2025	COSTS				\$ 10,298,132		
		DISTRIBUTI	ON AUTOMATION EN	IABLEMENT 2026			
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE	
23		MORRISTOWN TOWN,MORRIS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 1,375,899	FIRST HALF OF 2026	
23		MORRISTOWN TOWN,MORRIS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2026	
23		HARDING TOWNSHIP,MORRIS TOWNSHIP,MOUNT ARLINGTON BOROUGH,MORRISTOWN TOWN,SPRINGFIELD TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2026	

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
23		MORRIS TOWNSHIP,HARDING TOWNSHIP,MORRISTOWN TOWN	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2026
23		MORRISTOWN TOWN,CHATHAM TOWNSHIP,HARDING TOWNSHIP,MORRIS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2026
24		MORRISTOWN TOWN,MORRIS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	FIRST HALF OF 2026
24		FLORHAM PARK BOROUGH,MORRISTOWN TOWN,MORRIS TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2026
25		MORRIS TOWNSHIP,MORRISTOWN TOWN	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	SECOND HALF OF 2026
25		MORRISTOWN TOWN	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2026

26 TOWNSHIP (TWINSHIP ADDITION) TOWNSHIP (TWINSHIP ADDITION) TOWNSHIP ACKED TO TOWNSHIP ADDITION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SEL RELAYS WITHIN THE SELENT WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SELENT WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SELENT WITHIN THE SELENT WITHIN THE SELENT WITHIN THE SURSELT WITHIN THE SELENT WITHIN THE SUBSTATION (TRANSFORMER AND CI	Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
PETCONS DOROUGH, MONTO CIVE TOWNSHIP, POXBURY TOWNSHIP COMMUNICATION). NETCONG BOROUGH, MONTO CIVE TOWNSHIP, POXBURY TOWNSHIP, POXBURY TOWNSHIP, MONTO CIVE TOWNSHIP, MONTO CIVE TOWNSHIP, HOPATCONG BOROUGH 26 NETCONG BOROUGH, ANDOVER TOWNSHIP MONTO CIVE TOWNSHIP, STRANH OPE BOROUGH TOWNSHIP, STRANH TOWNSHIP, STRANH TOWNSHIP, STRANH TOWNSHIP, HOPATCONG BOROUGH TOWNSHIP, HOPATCONG BOROUGH 27 26 MOUNT OLIVE TOWNSHIP MOUNT OLIVE TOWNSHIP MOUNT OLIVE TOWNSHIP, CREATER TOWNSHIP, CREATER TOWNSHIP, CREATER TOWNSHIP, CREATER TOWNSHIP, CREATER TOWNSHIP, MONTO CIVE TOWNSHIP, CREATER	25			EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT	TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING		SECOND HALF OF 2026
26 TOWNSHIP, MOUNT OLIVE TOWNSHIP STAND 26 TOWNSHIP, BYRAM TOWNSHIP, MOUNT OLIVE TOWNSHIP MOUNT OLIVE TOWNSHIP PROPERTY OF TOWNSHIP, BYRAM TOW	26		BOROUGH,MOUNT OLIVE	EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT	TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING	\$ 1,375,899	SECOND HALF OF 2026
26 STANHOPE BOROUGH, BYRAM TOWNSHIP, MOUNT OLIVE TOWNSHIP, MOUNT O	26		TOWNSHIP,MOUNT OLIVE TOWNSHIP,BYRAM	EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT	TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING		SECOND HALF OF 2026
26 MOUNT OLIVE TOWNSHIP MOUNT OLIVE TOWNSHIP MOUNT OLIVE TOWNSHIP MOUNT OLIVE TOWNSHIP MOUNT OLIVE TOWNSHIP, ROXBURY TOWNSHIP, ROXBURY TOWNSHIP, NETCONG BOROUGH TOTAL 2026 COSTS MOUNT OLIVE TOWNSHIP, ROXBURY TOWNSHIP, NETCONG BOROUGH MOUNT OLIVE TOWNSHIP, ROXBURY TOWNSHIP, NETCONG BOROUGH MOUNT OLIVE TOWNSHIP, ROXBURY TOWNSHIP, ROXBURY TOWNSHIP, NETCONG BOROUGH MOUNT OLIVE TOWNSHIP, ROXBURY TOWNSHIP, ROXBURY TOWNSHIP, CHESTER TOWNSHIP, CHESTER TOWNSHIP, NETCONG BOROUGH MOUNT OLIVE TOWNSHIP, ROXBURY TOWNSHIP, ROXBURY TOWNSHIP, CHESTER TOWNSHIP, NETCONG BOROUGH MOUNT OLIVE TOWNSHIP, ROXBURY TOWNSHIP, ROXBURY TOWNSHIP, ROXBURY TOWNSHIP, NETCONG BOROUGH MOUNT OLIVE TOWNSHIP, ROXBURY TOWNSHIP, ROXB	26		TOWNSHIP, MOUNT OLIVE	EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT	TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING		SECOND HALF OF 2026
MOUNT OLIVE TOWNSHIP,ROXBURY TOWNSHIP,ROXBURY TOWNSHIP,CHESTER TOWNSHIP,NETCONG BOROUGH TOWNSHIP,NETCONG BOROUGH TOWNSHIP,NETCONG BOROUGH TOWNSHIP,NETCONG BOROUGH TOWNSHIP,NETCONG BOROUGH COMMUNICATION). EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION). TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES. SECOND HALF OF 2026 TOTAL 2026 COSTS * 4,454,301	26		MOUNT OLIVE TOWNSHIP	EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT	TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING		SECOND HALF OF 2026
¥ 1,100 1,000 1	26		TOWNSHIP, CHESTER	EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT	TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING		SECOND HALF OF 2026
	TOTAL 2026	6 COSTS				\$ 4,454,301	

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
27		HAMPTON TOWNSHIP,FREDON TOWNSHIP,FRANKFORD TOWNSHIP,NEWTON TOWN,ANDOVER TOWNSHIP,LAFAYETTE TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	FIRST HALF OF 2027
28		TOMS RIVER TOWNSHIP,LAVALLETTE BOROUGH,BERKELEY TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	FIRST HALF OF 2027
28		TOMS RIVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2027
28		TOMS RIVER TOWNSHIP,LAVALLETTE BOROUGH,BERKELEY TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2027
29		BRANCHBURG TOWNSHIP,CLINTON TOWNSHIP,ALLAMUCHY TOWNSHIP,READINGTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	SECOND HALF OF 2027
30		TOMS RIVER TOWNSHIP,BRICK TOWNSHIP,LAVALLETTE BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	SECOND HALF OF 2027

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
30		BRICK TOWNSHIP, TOMS RIVER TOWNSHIP, LAVALLETTE BOROUGH, BERKELEY TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2027
30		BRICK TOWNSHIP,LAVALLETTE BOROUGH,TOMS RIVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		SECOND HALF OF 2027
31		BERNARDS TOWNSHIP, MORRIS TOWNSHIP, MORRISTOWN TOWN, CHATHAM TOWNSHIP, HARDING TOWNSHIP, BERNARDSVILLE BOROUGH, BEDMINSTER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 536,463	SECOND HALF OF 2027
TOTAL 2027	7 COSTS	DISTRIBUTIO	ON AUTOMATION EN	IADI EMENT 2020	\$ 3,521,751	
Lacation	LOCATION	יון טפוא ו פוע	ON AUTOMATION EN	NADLEMENT 2020		PROJECTED IN-
Location Count	(Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	SERVICE DATE
32		TOMS RIVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	FIRST HALF OF 2028
32		TOMS RIVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2028

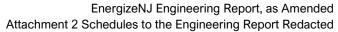
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
33		TOMS RIVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 956,181	FIRST HALF OF 2028
33		LAKEWOOD TOWNSHIP,OCEAN TOWNSHIP,SOUTH TOMS RIVER BOROUGH,TOMS RIVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2028
33		TOMS RIVER TOWNSHIP,MANCHESTER TOWNSHIP,BERKELEY TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2028
34		BEDMINSTER TOWNSHIP,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,BRIDGEWATER TOWNSHIP,HARDING TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 1,166,040	FIRST HALF OF 2028
34		BEDMINSTER TOWNSHIP,BERNARDS TOWNSHIP,FAR HILLS BOROUGH,BRIDGEWATER TOWNSHIP,BERNARDSVILLE BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2028
34		SUMMIT CITY,BRANCHBURG TOWNSHIP,BRIDGEWATER TOWNSHIP,BEDMINSTER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2028

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
34		BRIDGEWATER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2028
35		HAMBURG BOROUGH,HAMPTON TOWNSHIP,SUSSEX BOROUGH,HARDYSTON TOWNSHIP,WANTAGE TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	FIRST HALF OF 2028
35		BRANCHVILLE BOROUGH,MONTAGUE TOWNSHIP,FRANKFORD TOWNSHIP,WANTAGE TOWNSHIP,VERNON TOWNSHIP,STOCKTON BOROUGH,SUSSEX BOROUGH	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2028
36		WOODLAND TOWNSHIP,NEW PROVIDENCE BOROUGH,PEMBERTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	FIRST HALF OF 2028
36		PEMBERTON BOROUGH,WOODLAND TOWNSHIP,SOUTHAMPTON TOWNSHIP,PEMBERTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2028
TOTAL 2028	8 COSTS	DICTRIBUTIO		IADI EMENT 2020	\$ 4,361,187	
	1001700	DISTRIBUTIO	ON AUTOMATION EN	NABLEMENT 2029		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
37		WOODLAND TOWNSHIP,PEMBERTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	FIRST HALF OF 2029
37		PEMBERTON TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2029
38		HAMPTON TOWNSHIP,SPARTA TOWNSHIP,WANTAGE TOWNSHIP,ROXBURY TOWNSHIP,ANDOVER BOROUGH,ANDOVER TOWNSHIP,LAFAYETTE TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.	\$ 746,322	FIRST HALF OF 2029
38		SPARTA TOWNSHIP,LAFAYETTE TOWNSHIP,STILLWATER TOWNSHIP,ANDOVER TOWNSHIP	REPLACE AND/OR ADD EQUIPMENT WITH SEL RELAYS WITHIN THE SUBSTATION (TRANSFORMER AND CIRCUIT COMMUNICATION).	ENHANCE THE VISIBILITY FOR DCC OPERATORS TO MAKE REAL-TIME DECISION MAKING. THIS WILL ALSO ALLOW THE CURRENT DISTRIBUTION INFRASTRUCTURE TO ACCEPT EMERGING TECHNOLOGIES.		FIRST HALF OF 2029
TOTAL 2029	COSTS				\$ 1,492,644	

A FirstEnergy Cor	COASTAL SUBSTATION SWITCHGEAR 2025									
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
1		ANDOVER BOROUGH, ANDOVER TOWNSHIP, BYRAM TOWNSHIP, GREEN TOWNSHIP, NEWTON TOWN	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 2,374,495	SECOND HALF OF 2025				
1		ANDOVER BOROUGH, ANDOVER TOWNSHIP, BYRAM TOWNSHIP, GREEN TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.		SECOND HALF OF 2025				
1		ANDOVER BOROUGH, ANDOVER TOWNSHIP, BYRAM TOWNSHIP, FREDON TOWNSHIP, FRELINGHUYSEN TOWNSHIP, GREEN TOWNSHIP, NEWTON TOWN	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.		SECOND HALF OF 2025				
TOTAL 2025 C	COSTS	0040741		D 0000	\$ 2,374,495					
		COASTAL	SUBSTATION SWITCHGEA	R 2026						
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
2		COLTS NECK TOWNSHIP, FREEHOLD TOWNSHIP, MANALAPAN TOWNSHI3P, MARLBORO TOWNSHIP, OLD BRIDGE TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 2,374,495	FIRST HALF OF 2026				
2		COLTS NECK TOWNSHIP, FREEHOLD BOROUGH, FREEHOLD TOWNSHIP, MARLBORO TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.		FIRST HALF OF 2026				
3		BERKELEY TOWNSHIP, LAKEHURST BOROUGH, LONG BRANCH CITY, MANCHESTER TOWNSHIP, OCEAN TOWNSHIP, SEASIDE PARK BOROUGH, SOUTH TOMS RIVER BOROUGH, TOMS RIVER TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 2,374,495	SECOND HALF OF 2026				

TOTAL 2026 COSTS COASTAL SUBSTATION SWITCHGEAR 2027 Location Count (Substation/Circuit) BRICK TOWNSHIP DESCRIPTION DESCRIPTION SWITCHGEAR 2027 Location Count (Substation/Circuit) BRICK TOWNSHIP LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION WITH IMPROVED PROTECTION REAL TIME MONITORING, AND COMMUNICATION. TOMS RIVER TOWNSHIP DESCRIPTION WITH IMPROVED PROTECTION WITH IMPROVED PROTECTI	A FirstEnergy Con	mpany							
Location Count (Substation/Circuit) TOWNSHIP DESCRIPTION OBJECTIVE COST ESTIMATE PROJECTED INSERTION (Substation/Circuit) BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONTORING, AND COMMUNICATION. BERKELEY TOWNSHIP, BRICK TOWNSHIP, BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION REAL TIME MONTORING, AND COMMUNICATION. BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION REAL TIME MONTORING, AND COMMUNICATION. BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION REAL TIME MONTORING, AND COMMUNICATION. BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONTORING, AND COMMUNICATION. BRICK TOWNSHIP, LAVALLETTE DOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONTORING, AND COMMUNICATION. BRICK TOWNSHIP, LAVALLETTE DOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONTORING, AND COMMUNICATION. BRICK TOWNSHIP, CAVALLETTE DOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONTORING, AND COMMUNICATION. BREPLACE DISTRIBUTION SWITCHGEAR WHERE REVICED DESTRIBUTION WITH IMPROVED PROTECTION, REAL TIME MONTORING, AND COMMUNICATION. BREPLACE DISTRIBUTION WITH IMPROVED PROTECTION REAL TIME MONTORING, AND COMMUNICATION. BREPLACE DISTRIBUTION SWITCHGEAR WHERE REVICED DESTRIBUTION SWITCHGEAR WHERE REVICED DESTRIBUTION SWITCHGEAR WHERE REVICED DESTRIBUTION SWITCHGEAR WHITE MONTORING, AND COMMUNICATION. BLAKEWOOD TOWNSHIP, COEAN TOWNSHIP PROTECTION REAL TIME MONTORING, AND COMMUNICATION. BERLECETY TOWNSHIP, MANCHESTER TOWNSHIP PROTECTION REAL TIME MONTORING, AND COMMUNICATION. BERLECETY TOWNSHIP, MANCHESTER TOWNSHIP PROTECTION REAL TIME MONTORING, AND CIRCUIT RELIBITION	3		CITY, SOUTH TOMS RIVER BOROUGH,	WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND	CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF		SECOND HALF OF 2026		
LOCATION (Substation/Circuit) TOWNSHIP DESCRIPTION OBJECTIVE COST ESTIMATE PROJECTED INSERVICE DATE REPLACE DISTRIBUTION SWITCHGEAR WHERE SUBSTATION AND CIRCUIT RELIABILITY AND PROJECTED INSERVED OF SERVICE DATE REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERD DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND CIRCUIT RELIABILITY AND PROJECT OF SUBSTATION	TOTAL 2026 C	COSTS				\$ 4,748,990			
Count Coun	COASTAL SUBSTATION SWITCHGEAR 2027								
BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND ESTIGET RELIABILITY AND COMMUNICATION. BERKELEY TOWNSHIP, BRICK TOWNSHIP, BRICK TOWNSHIP, DAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERNATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERNATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERNATION WITH MORPOVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERNATION WITH MORPOVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERNATION WITH MORPOVED PROTECTION, REAL TIME MONITORING, AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT. BERKELEY TOWNSHIP, OCEAN TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, MANCHESTER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, MANCHESTER TOWNSHIP PROTECTION, WITH MIPPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKE			TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE			
### SERKELEY TOWNSHIP, BRICK TOWNSHIP COMMENDED BY COMMUNICATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION OF NEW EQUIPMENT. ### SERVER TOWNSHIP COMMUNICATION OF NEW EQUIPMENT. ### SECOND HALF OF NEW EQUIPMENT. ### SECOND	4		•	WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND	CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF	\$ 2,374,495	-		
BRICK TOWNSHIP, LAVALLETTE BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. TOMS RIVER TOWNSHIP TOWNSHIP, OCEAN TOWNSHIP, OCEAN TOWNSHIP BOROUGH, TOMS RIVER TOWNSHIP TOWNSHIP, SOUTH TOMS RIVER TOWNSHIP TOWNSHIP, SOUTH TOMS RIVER TOWNSHIP TOWNSHIP, TOMS RIVER TOWNSHIP TO	4		TOWNSHIP, LAVALLETTE BOROUGH,	WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND	CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF		-		
TOMS RIVER TOWNSHIP WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT. LAKEWOOD TOWNSHIP, OCEAN TOWNSHIP, SOUTH TOMS RIVER BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. RESILIENCY BY INSTALLATION OF NEW EQUIPMENT. SECOND HALF OF 2027	4		· ·	WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND	CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF		-		
LAKEWOOD TOWNSHIP, OCEAN TOWNSHIP, OCEAN TOWNSHIP, SOUTH TOMS RIVER BOROUGH, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, MANCHESTER TOWNSHIP PROTECTION, REAL TIME MONITORING SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, MANCHESTER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	5		TOMS RIVER TOWNSHIP	WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND	CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF	\$ 2,374,495	SECOND HALF OF 2027		
BERKELEY TOWNSHIP, MANCHESTER TOWNSHIP, MANCHESTER TOWNSHIP, TOMS RIVER TOWNSHIP PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. BERKELEY TOWNSHIP, MANCHESTER DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION. SECOND HALF OF NEW EQUIPMENT.	5		TOWNSHIP, SOUTH TOMS RIVER	WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND	CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF		SECOND HALF OF 2027		
TOTAL 2027 COSTS \$ 4,748,990	5			WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND	CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF		SECOND HALF OF 2027		
	TOTAL 2027 C	COSTS				\$ 4,748,990			


A FirstEnergy Con	COASTAL SUBSTATION SWITCHGEAR 2028									
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
6		BAY HEAD BOROUGH, BEACHWOOD BOROUGH, BERKELEY TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 2,374,495	FIRST HALF OF 2028				
6		BAY HEAD BOROUGH, BEACHWOOD BOROUGH, BERKELEY TOWNSHIP, LACEY TOWNSHIP, OCEAN TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.		FIRST HALF OF 2028				
6		BAY HEAD BOROUGH, BERKELEY TOWNSHIP, OCEAN GATE BOROUGH, TOMS RIVER TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 2,374,495	FIRST HALF OF 2028				
7	BARNEGAT TOWNSHIP, BAY HEAD BOROUGH, BERKELEY TOWNSHIP, LACEY TOWNSHIP, OCEAN GATE BOROUGH, SOUTHAMPTON TOWNSHIP		REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.		SECOND HALF OF 2028				
7		BARNEGAT TOWNSHIP, BERKELEY TOWNSHIP, LACEY TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.		SECOND HALF OF 2028				
TOTAL 2028 C	COSTS				\$ 4,748,990					
		COASTAL	SUBSTATION SWITCHGEA	R 2029						
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
8		PEMBERTON TOWNSHIP, WOODLAND TOWNSHIP	REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 2,374,495	FIRST HALF OF 2029				

EnergizeNJ Engineering Report, as Amended Attachment 2 Schedules to the Engineering Report Redacted

A FirstEnergy Co		REPLACE DISTRIBUTION SWITCHGEAR WHERE ENCLOSURE HAVE SEVERE DEUTERIATION WITH IMPROVED PROTECTION, REAL TIME MONITORING, AND COMMUNICATION.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.		FIRST HALF OF 2029
TOTAL 2029	COSTS			\$ 2,374,495	

A FirstEnergy (SUBSTATION	EQUIPMENT REPLA	CEMENT 2025		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1		ANDOVER TOWNSHIP,BYRAM TOWNSHIP,GREEN TOWNSHIP,ANDOVER BOROUGH,NEWTON TOWN	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2025
2		GREEN TOWNSHIP,ANDOVER TOWNSHIP,ANDOVER BOROUGH,BYRAM TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2025
3		NEWTON TOWN, GREEN TOWNSHIP, BYRAM TOWNSHIP, ANDOVER BOROUGH, FRELINGHUYSEN TOWNSHIP, FREDON TOWNSHIP, ANDOVER TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2025
4		BELMAR BOROUGH,WALL TOWNSHIP,SPRING LAKE HEIGHTS BOROUGH,SPRING LAKE BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2025
5		BELMAR BOROUGH,LAKE COMO BOROUGH,WALL TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2025
6		BELMAR BOROUGH,LAKE COMO BOROUGH,SPRING LAKE BOROUGH,WALL TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2025
7		LAKE COMO BOROUGH,WALL TOWNSHIP,BELMAR BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2025
8		SPRING LAKE BOROUGH,SPRING LAKE HEIGHTS BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2025
9		BOONTON TOWNSHIP,BOONTON TOWN	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2025
10		BOONTON TOWN,MONTVILLE TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP,BOONTON TOWNSHIP,ROCKAWAY TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2025

A FirstEnergy C	Company	_			_	_				
11		HIGHLANDS BOROUGH,ATLANTIC HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2025				
12		HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP,ATLANTIC HIGHLANDS BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2025				
TOTAL 2025	COSTS				\$ 3,386,544					
	SUBSTATION EQUIPMENT REPLACEMENT 2026									
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
13		FREEHOLD BOROUGH,WEST WINDSOR TOWNSHIP,FREEHOLD TOWNSHIP,WALL TOWNSHIP,HOWELL TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2026				
14		FREEHOLD BOROUGH,FREEHOLD TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2026				
15		FREEHOLD BOROUGH,FREEHOLD TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2026				
16		BYRAM TOWNSHIP (SUSSEX)	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2026				
17		LAKEHURST BOROUGH,MANCHESTER TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2026				
18		LAKEHURST BOROUGH,MANCHESTER TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2026				
19		BRICK TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2026				
20		CLINTON TOWNSHIP, CLINTON TOWN, LEBANON BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2026				

EnergizeNJ Engineering Report, as Amended Attachment 2 Schedules to the Engineering Report Redacted

TOTAL 202	26 COSTS				\$ 2,822,120	
22		LEBANON BOROUGH,LEBANON TOWNSHIP,TEWKSBURY TOWNSHIP,CLINTON TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2026
21		CLINTON TOWNSHIP,LEBANON BOROUGH,TEWKSBURY TOWNSHIP,LEBANON TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2026

0,7	, 3	SUBSTATION	EQUIPMENT REPLA	CEMENT 2027		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
23		LONG BRANCH CITY	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2027
24		LONG BRANCH CITY, OCEAN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2027
25		MONMOUTH BEACH BOROUGH,OCEAN TOWNSHIP,LONG BRANCH CITY	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2027
26		LONG BRANCH CITY, OCEAN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2027
27		LONG BRANCH CITY, MONMOUTH BEACH BOROUGH, OCEAN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2027
28		MATAWAN BOROUGH,ABERDEEN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2027
29		TINTON FALLS BOROUGH,MIDDLETOWN TOWNSHIP,RED BANK BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2027
30		PEMBERTON BOROUGH,PEMBERTON TOWNSHIP,SOUTHAMPTON TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2027
31		PEMBERTON BOROUGH,WOODLAND TOWNSHIP,SOUTHAMPTON TOWNSHIP,PEMBERTON TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2027
32		BELVIDERE TOWN,LIBERTY TOWNSHIP,PHILLIPSBURG TOWN,WHITE TOWNSHIP,HARMONY TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2027
TOTAL 2027	COSTS				\$ 2,822,120	

		SUBSTATION	EQUIPMENT REPLA	CEMENT 2028		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
33		TOMS RIVER TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2028
34		TOMS RIVER TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2028
35		RIVERDALE BOROUGH,POMPTON LAKES BOROUGH,PEQUANNOCK TOWNSHIP,BUTLER BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2028
36		PEQUANNOCK TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2028
37		PEQUANNOCK TOWNSHIP,WAYNE TOWNSHIP,WATCHUNG BOROUGH,POMPTON LAKES BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2028
38		KEYPORT BOROUGH,RED BANK BOROUGH,MIDDLETOWN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2028
39		SHREWSBURY BOROUGH,RED BANK BOROUGH,SHREWSBURY TOWNSHIP,TINTON FALLS BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2028
40		LONG HILL TOWNSHIP,WATCHUNG BOROUGH	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2028
41		HAZLET TOWNSHIP,HOLMDEL TOWNSHIP,KEANSBURG BOROUGH,MIDDLETOWN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2028
42		MIDDLETOWN TOWNSHIP,HOLMDEL TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	SECOND HALF OF 2028
TOTAL 2028	COSTS				\$ 2,822,120	

		SUBSTATION	I EQUIPMENT REPLA	CEMENT 2029		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
43		HAZLET TOWNSHIP,MIDDLETOWN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2029
44		OCEAN TOWNSHIP,NEPTUNE TOWNSHIP,OCEAN TOWNSHIP,ASBURY PARK CITY	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2029
45		BERKELEY TOWNSHIP,MANCHESTER TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2029
46		MANCHESTER TOWNSHIP,BERKELEY TOWNSHIP,LACEY TOWNSHIP,OCEAN TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2029
47		MANCHESTER TOWNSHIP	REPLACE DISTRIBUTION OIL BREAKER WITH AIR/RMAG OR VACUUM TYPE BREAKERS.	INCREASE SUBSTATION AND CIRCUIT RELIABILITY AND RESILIENCY BY INSTALLATION OF NEW EQUIPMENT.	\$ 282,212	FIRST HALF OF 2029
TOTAL 2028	3 COSTS				\$ 1,411,060	

A FirstEnergy Com	MODERNIZE PROTECTIVE EQUIPMENT: DPU 2024									
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE				
1		MOUNT OLIVE TOWNSHIP,ROXBURY TOWNSHIP,CHESTER TOWNSHIP,NETCONG BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2024				
2		MILFORD BOROUGH,HAMPTON BOROUGH,MANSFIELD TOWNSHIP,BETHLEHEM TOWNSHIP,WASHINGTON TOWNSHIP,ALEXANDRIA TOWNSHIP,FRANKLIN TOWNSHIP,UNION TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2024				
3		FRANKLIN TOWNSHIP,MILFORD BOROUGH,LAMBERTVILLE CITY,HOLLAND TOWNSHIP,UNION TOWNSHIP,HIGH BRIDGE BOROUGH,ALEXANDRIA TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2024				
4		GREENWICH TOWNSHIP,PHILLIPSBURG TOWN,FRANKLIN TOWNSHIP,POHATCONG TOWNSHIP,LOPATCONG TOWNSHIP,ALPHA BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2024				
5		HOLLAND TOWNSHIP,POHATCONG TOWNSHIP,PHILLIPSBURG TOWN,LOPATCONG TOWNSHIP,GREENWICH TOWNSHIP,ALPHA BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2024				
6		READINGTON TOWNSHIP,BRANCHBURG TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2024				

A FirstEnergy Com Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
7		BRANCHBURG TOWNSHIP,BERNARDSVILLE BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2024
TOTAL 2024 CO	OSTS				\$ 929,404	
		MODERNIZE	PROTECTIVE EQUIP	PMENT: DPU 2025		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
8		POMPTON LAKES BOROUGH,MORRIS TOWNSHIP,PEQUANNOCK TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2025
9		BOONTON TOWNSHIP,MOUNTAIN LAKES BOROUGH,BOONTON TOWN,EAST HANOVER TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2025
10		BOONTON TOWNSHIP,MONTVILLE TOWNSHIP,BOONTON TOWN,PARSIPPANY TROY HILLS TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2025
11		MORRIS TOWNSHIP,FLORHAM PARK BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2025
12		MONTVILLE TOWNSHIP,MOUNTAIN LAKES BOROUGH,BOONTON TOWN,BOONTON TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2025

A FirstEnergy Com Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
13		PARSIPPANY TROY HILLS TOWNSHIP,BOONTON TOWN,BOONTON TOWNSHIP,MONTVILLE TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2025
14		BERNARDS TOWNSHIP,WARREN TOWNSHIP,MILLBURN TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2025
15		NEW PROVIDENCE BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2025
16		MADISON BOROUGH,FLORHAM PARK BOROUGH,HANOVER TOWNSHIP,EAST HANOVER TOWNSHIP,LIVINGSTON TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2025
17		HARDING TOWNSHIP, MADISON BOROUGH, CHATHAM BOROUGH, CHATHAM TOWNSHIP, FLORHAM PARK BOROUGH, LIVINGSTON TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2025
18		SUMMIT CITY,MILLBURN TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2025
19		MONROE TOWNSHIP,JAMESBURG BOROUGH,HELMETTA BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2025

A FirstEnergy Com	pany							
	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE		
TOTAL 2025 CO	OSTS				\$ 1,593,264			
MODERNIZE PROTECTIVE EQUIPMENT: DPU 2026								
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE		
20		WALL TOWNSHIP,FARMINGDALE BOROUGH,JACKSON TOWNSHIP,HOWELL TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2026		
21		HIGHTSTOWN BOROUGH,EAST WINDSOR TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2026		
22		CRANBURY TOWNSHIP,WEST WINDSOR TOWNSHIP,HIGHTSTOWN BOROUGH,EAST WINDSOR TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2026		
23		EAST WINDSOR TOWNSHIP,HIGHTSTOWN BOROUGH,WEST WINDSOR TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2026		
24		EAST WINDSOR TOWNSHIP,HIGHTSTOWN BOROUGH,MILLSTONE TOWNSHIP,ROBBINSVILLE TOWNSHIP,WEST WINDSOR TOWNSHIP,UPPER FREEHOLD TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2026		
25		SAYREVILLE BOROUGH,EAST BRUNSWICK TOWNSHIP,ROCKAWAY BOROUGH,SPOTSWOOD BOROUGH,OLD BRIDGE TOWNSHIP,DENVILLE TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2026		

A FirstEnergy Com	npany -					
	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
TOTAL 2026 CO	OSTS				\$ 796,632	
		MODERNIZE	PROTECTIVE EQUIP	PMENT: DPU 2027		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
26		MILLSTONE TOWNSHIP,EAST WINDSOR TOWNSHIP,MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MONROE TOWNSHIP,HIGHTSTOWN BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2027
27		MONROE TOWNSHIP,MANALAPAN TOWNSHIP,MILLSTONE TOWNSHIP,ENGLISHTOWN BOROUGH,OLD BRIDGE TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2027
28		TOMS RIVER TOWNSHIP,MANALAPAN TOWNSHIP,ENGLISHTOWN BOROUGH,MILLSTONE TOWNSHIP,FREEHOLD BOROUGH,FREEHOLD TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2027
29		BRICK TOWNSHIP,LAKEWOOD TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2027
30		OCEAN TOWNSHIP,BERKELEY TOWNSHIP,TINTON FALLS BOROUGH,ASBURY PARK CITY,OCEAN TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2027
31		POINT PLEASANT BEACH BOROUGH,BAY HEAD BOROUGH,BRICK TOWNSHIP,POINT PLEASANT BOROUGH,MANTOLOKING BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2027

A FirstEnergy Com	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE			
32		BRICK TOWNSHIP,POINT PLEASANT BOROUGH,OCEAN TOWNSHIP,POINT PLEASANT BEACH BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2027			
33		POINT PLEASANT BEACH BOROUGH,POINT PLEASANT BOROUGH,BRICK TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2027			
34		SHREWSBURY BOROUGH,RED BANK BOROUGH,LITTLE SILVER BOROUGH,SHREWSBURY TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2027			
35		BRICK TOWNSHIP,TOMS RIVER TOWNSHIP,LAVALLETTE BOROUGH,BERKELEY TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2027			
36		BRICK TOWNSHIP,LAVALLETTE BOROUGH,TOMS RIVER TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2027			
37		TOMS RIVER TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2027			
TOTAL 2027 CO	TOTAL 2027 COSTS \$ 1,593,264								
		MODERNIZE	PROTECTIVE EQUIP	PMENT: DPU 2028					
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE			

A FirstEnergy Com Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
38		LAKEWOOD TOWNSHIP,OCEAN TOWNSHIP,SOUTH TOMS RIVER BOROUGH,TOMS RIVER TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2028
39		TOMS RIVER TOWNSHIP,MANCHESTER TOWNSHIP,BERKELEY TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2028
40		SEASIDE PARK BOROUGH,TOMS RIVER TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2028
41		TOMS RIVER TOWNSHIP,SEASIDE PARK BOROUGH,SEASIDE HEIGHTS BOROUGH,BERKELEY TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2028
42		JACKSON TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2028
43		LACEY TOWNSHIP,BARNEGAT TOWNSHIP,OCEAN TOWNSHIP,OCEAN TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2028
44		LACEY TOWNSHIP,OCEAN TOWNSHIP,BARNEGAT TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2028

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
45		LAKEWOOD TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2028
46		LAKEWOOD TOWNSHIP,MANCHESTER TOWNSHIP,JACKSON TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2028
47		NORTH HANOVER TOWNSHIP,NEW HANOVER TOWNSHIP,WRIGHTSTOWN BOROUGH,PEMBERTON TOWNSHIP,PEMBERTON BOROUGH,SPRINGFIELD TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2028
48		MANCHESTER TOWNSHIP,LAKEWOOD TOWNSHIP,JACKSON TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2028
49		SOUTH TOMS RIVER BOROUGH,TOMS RIVER TOWNSHIP,BERKELEY TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	SECOND HALF OF 2028
TOTAL 2028 CO	OSTS				\$ 1,593,264	
		MODERNIZE	PROTECTIVE EQUIP	PMENT: DPU 2029		
Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
50		ALPHA BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2029

Location Count	LOCATION (Substation/Circuit)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
51		BERKELEY HEIGHT TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2029
52		LIVINGSTON TOWNSHIP	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2029
53		LITTLE SILVER BOROUGH	REPLACE CURRENT DPU OR DPU 2000R RELAYS WITH A NEWER SEL MICROPROCESSOR RELAY.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING THE CURRENT RELAYING EQUIPMENT WITH A MICROPROCESSOR RELAY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 132,772	FIRST HALF OF 2029
TOTAL 2029 CO	OSTS				\$ 531,088	

A FirstEnergy (Sompany	MODERNIZE	PROTECTIVE EQUIPM	IENT: UFLS 2024		
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1		ROCKAWAY TOWNSHIP, ROCKAWAY BOROUGH, DENVILLE TOWNSHIP, INDEPENDENCE TOWNSHIP, RANDOLPH TOWNSHIP, MANASQUAN BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
2		NETCONG BOROUGH, ROXBURY TOWNSHIP, MOUNT OLIVE TOWNSHIP, STANHOPE BOROUGH, ANDOVER TOWNSHIP, BYRAM TOWNSHIP, HOPATCONG BOROUGH, CHESTER TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
3		FRANKLIN TOWNSHIP, SPARTA TOWNSHIP, FRANKLIN BOROUGH, OGDENSBURG BOROUGH, JEFFERSON TOWNSHIP, HARDYSTON TOWNSHIP, VERNON TOWNSHIP, NEWTON TOWN, ANDOVER TOWNSHIP, HAMBURG BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
4		JEFFERSON TOWNSHIP, HARDYSTON TOWNSHIP, SPARTA TOWNSHIP, VERNON TOWNSHIP, HAMPTON TOWNSHIP, WANTAGE TOWNSHIP, ROXBURY TOWNSHIP, ANDOVER BOROUGH, ANDOVER TOWNSHIP, LAFAYETTE TOWNSHIP, STILLWATER TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
5		BERNARDS TOWNSHIP, SPARTA TOWNSHIP, NEWTON TOWN, HAMPTON TOWNSHIP, FREDON TOWNSHIP, ANDOVER TOWNSHIP, ANDOVER BOROUGH, GREEN TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024

7	_	MANSFIELD TOWNSHIP, HACKETTSTOWN TOWN, WASHINGTON TOWNSHIP, INDEPENDENCE TOWNSHIP, WASHINGTON BOROUGH, OXFORD TOWNSHIP, ALLAMUCHY TOWNSHIP, MOUNT OLIVE TOWNSHIP JEFFERSON TOWNSHIP, HOPATCONG BOROUGH, WHARTON BOROUGH, ROCKAWAY TOWNSHIP, MOUNT	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
7		BOROUGH, WHARTON BOROUGH,				
		ARLINGTON BOROUGH, RANDOLPH TOWNSHIP, ROXBURY TOWNSHIP, ANDOVER BOROUGH, SPARTA TOWNSHIP, PARSIPPANY TROY HILLS TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
8	-	ROCKAWAY BOROUGH, DENVILLE TOWNSHIP, ROCKAWAY TOWNSHIP, RANDOLPH TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
9		BYRAM TOWNSHIP, HARDYSTON TOWNSHIP, SPARTA TOWNSHIP, STANHOPE BOROUGH, ANDOVER BOROUGH, ANDOVER TOWNSHIP, HOPATCONG BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
10		MOUNT OLIVE TOWNSHIP, WASHINGTON TOWNSHIP, CALIFON BOROUGH, CHESTER BOROUGH, LEBANON TOWNSHIP, CHESTER TOWNSHIP, WASHINGTON BOROUGH, PHILLIPSBURG TOWN, SUMMIT CITY, MENDHAM BOROUGH, RANDOLPH TOWNSHIP, MENDHAM TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2024
TOTAL 2024 COSTS					\$ 2,518,310	

A FirstEnergy C Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
11		WANTAGE TOWNSHIP, HAMBURG BOROUGH, VERNON TOWNSHIP, HARDYSTON TOWNSHIP, HIGH BRIDGE BOROUGH, FRANKLIN TOWNSHIP, FRANKLIN BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2025
12		CHESTER TOWNSHIP, MENDHAM BOROUGH, MENDHAM TOWNSHIP, BEDMINSTER TOWNSHIP, RARITAN TOWNSHIP, CHESTER BOROUGH, BERNARDSVILLE BOROUGH, FAR HILLS BOROUGH, PEAPACK AND GLADSTONE BOROUGH, BRANCHVILLE BOROUGH, RUMSON BOROUGH, BERNARDS TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2025
13		FRANKFORD TOWNSHIP, SANDYSTON TOWNSHIP, BRANCHVILLE BOROUGH, HAMPTON TOWNSHIP, NEWTON TOWN, LAFAYETTE TOWNSHIP, JACKSON TOWNSHIP, FREDON TOWNSHIP, STILLWATER TOWNSHIP, MONTAGUE TOWNSHIP, NEW PROVIDENCE BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2025
14		PEAPACK AND GLADSTONE BOROUGH, HOLLAND TOWNSHIP, MORRISTOWN TOWN, RANDOLPH TOWNSHIP, CHESTER TOWNSHIP, MORRIS TOWNSHIP, MENDHAM TOWNSHIP, MENDHAM BOROUGH, BERNARDSVILLE BOROUGH, BERNARDS TOWNSHIP, FLEMINGTON BOROUGH, SUMMIT CITY, HARDING TOWNSHIP, DOVER TOWN	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2025

A FirstEnergy C Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
15		BYRAM TOWNSHIP, ROXBURY TOWNSHIP, ANDOVER TOWNSHIP, HOPATCONG BOROUGH, ANDOVER BOROUGH, JEFFERSON TOWNSHIP, MOUNT ARLINGTON BOROUGH, PARSIPPANY TROY HILLS TOWNSHIP, NETCONG BOROUGH, MOUNT OLIVE TOWNSHIP, STANHOPE BOROUGH, MENDHAM BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2025
16		WHITE TOWNSHIP, WASHINGTON TOWNSHIP, WASHINGTON BOROUGH, MANSFIELD TOWNSHIP, OXFORD TOWNSHIP, FRANKLIN TOWNSHIP, LEBANON TOWNSHIP, HARMONY TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2025
17		FRENCHTOWN BOROUGH, HOLLAND TOWNSHIP, ALEXANDRIA TOWNSHIP, MILFORD BOROUGH, KINGWOOD TOWNSHIP, FRANKLIN TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2025
18		FRANKLIN TOWNSHIP, BRANCHBURG TOWNSHIP, FLEMINGTON BOROUGH, CLINTON TOWNSHIP, PHILLIPSBURG TOWN, RARITAN TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2025
19		CLINTON TOWNSHIP, CLINTON TOWN, LEBANON BOROUGH, TEWKSBURY TOWNSHIP, LEBANON TOWNSHIP, READINGTON TOWNSHIP, RARITAN TOWNSHIP, BRANCHBURG TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2025

A FirstEnergy (Company					
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
20		WHITE TOWNSHIP, LOPATCONG TOWNSHIP, FRANKLIN TOWNSHIP, BLOOMSBURY BOROUGH, HARMONY TOWNSHIP, GREENWICH TOWNSHIP, BELVIDERE TOWN, PHILLIPSBURG TOWN, HOPE TOWNSHIP, WASHINGTON BOROUGH, POHATCONG TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2025
21		HOPEWELL TOWNSHIP, CLINTON TOWNSHIP, READINGTON TOWNSHIP, FLEMINGTON BOROUGH, EAST AMWELL TOWNSHIP, WEST AMWELL TOWNSHIP, DELAWARE TOWNSHIP, RARITAN TOWNSHIP, STOCKTON BOROUGH, LAMBERTVILLE CITY	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2025
22		ALPHA BOROUGH, PHILLIPSBURG TOWN, POHATCONG TOWNSHIP, HOLLAND TOWNSHIP, LOPATCONG TOWNSHIP, GREENWICH TOWNSHIP, FRANKLIN TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2025
23		PHILLIPSBURG TOWN, POHATCONG TOWNSHIP, WHITE TOWNSHIP, HARMONY TOWNSHIP, LOPATCONG TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2025
TOTAL 2025	COSTS	1400551			\$ 3,273,803	
		MODERNIZE	PROTECTIVE EQUIPM	IENT: UFLS 2026		
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
24		BETHLEHEM TOWNSHIP, HAMPTON BOROUGH, WASHINGTON TOWNSHIP, GREENWICH TOWNSHIP, FRANKLIN TOWNSHIP, HARMONY TOWNSHIP, LEBANON TOWNSHIP, PHILLIPSBURG TOWN, WHITE TOWNSHIP, LOPATCONG TOWNSHIP, WASHINGTON BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2026
25		MILLBURN TOWNSHIP, SUMMIT CITY, SPRINGFIELD TOWNSHIP, NEW PROVIDENCE BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2026
26		MILLBURN TOWNSHIP, RINGWOOD BOROUGH, PHILLIPSBURG TOWN	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2026
27		NEW PROVIDENCE BOROUGH, BERKELEY HEIGHTS TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2026
28		MILLBURN TOWNSHIP, NEW PROVIDENCE BOROUGH, SUMMIT CITY, SPRINGFIELD TOWNSHIP, LIVINGSTON TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2026
29		BOONTON TOWN, PARSIPPANY TROY HILLS TOWNSHIP, MORRIS PLAINS BOROUGH, BOONTON TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2026
OTAL 2026 COSTS \$ 1,510,986						

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
30		SUMMIT CITY, MILLBURN TOWNSHIP, SPRINGFIELD TOWNSHIP, BERKELEY HEIGHTS TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2027
31		NEW PROVIDENCE BOROUGH, BERKELEY HEIGHTS TOWNSHIP, BERNARDSVILLE BOROUGH, MILLBURN TOWNSHIP, SUMMIT CITY	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2027
32		CHATHAM BOROUGH, CHATHAM TOWNSHIP, SUMMIT CITY, HARDING TOWNSHIP, NEPTUNE TOWNSHIP, MORRISTOWN TOWN, ROCKAWAY TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2027
33		LIVINGSTON TOWNSHIP, MILLBURN TOWNSHIP, LIBERTY TOWNSHIP, EAST HANOVER TOWNSHIP, HANOVER TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2027
34		SPRINGFIELD TOWNSHIP, MILLBURN TOWNSHIP, MOUNTAINSIDE BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2027
35		MILLBURN TOWNSHIP, MOUNTAINSIDE BOROUGH, SPRINGFIELD TOWNSHIP, BERKELEY HEIGHTS TOWNSHIP, SUMMIT CITY, RARITAN TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2027
36		HANOVER TOWNSHIP, EAST HANOVER TOWNSHIP, WANAQUE BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2027

A FirstEnergy C Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
37		MIDDLETOWN TOWNSHIP, KEANSBURG BOROUGH, HIGHLANDS BOROUGH, HAZLET TOWNSHIP, MANCHESTER TOWNSHIP, HOLMDEL TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2027
38		OLD BRIDGE TOWNSHIP, EAST BRUNSWICK TOWNSHIP, SPOTSWOOD BOROUGH, MONROE TOWNSHIP, SAYREVILLE BOROUGH, ROCKAWAY BOROUGH, DENVILLE TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2027
39		FREEHOLD BOROUGH, FREEHOLD TOWNSHIP, OLD BRIDGE TOWNSHIP, MANALAPAN TOWNSHIP, UPPER FREEHOLD TOWNSHIP, HOWELL TOWNSHIP, MARLBORO TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2027
40		WALL TOWNSHIP, FARMINGDALE BOROUGH, JACKSON TOWNSHIP, HOWELL TOWNSHIP, FREEHOLD TOWNSHIP, FREEHOLD BOROUGH, SEASIDE PARK BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2027
41		OLD BRIDGE TOWNSHIP, SAYREVILLE BOROUGH, SOUTH AMBOY CITY, MONROE TOWNSHIP, ABERDEEN TOWNSHIP, KEYPORT BOROUGH, KEANSBURG BOROUGH, HAZLET TOWNSHIP, MATAWAN BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2027
TOTAL 2027	COSTS				\$ 3,021,972	
		MODERNIZE	PROTECTIVE EQUIPM	IENT: UFLS 2028		
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
42		TOMS RIVER TOWNSHIP, MANALAPAN TOWNSHIP, ENGLISHTOWN BOROUGH, MILLSTONE TOWNSHIP, FREEHOLD BOROUGH, FREEHOLD TOWNSHIP, HOWELL TOWNSHIP, MARLBORO TOWNSHIP, MONROE TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2028
43		WALL TOWNSHIP, MANASQUAN BOROUGH, BRIELLE BOROUGH, MANALAPAN TOWNSHIP, SEA GIRT BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2028
44		LONG BRANCH CITY, OCEAN TOWNSHIP, MONMOUTH BEACH BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2028
45		SPRING LAKE HEIGHTS BOROUGH, WALL TOWNSHIP, SPRING LAKE BOROUGH, BELMAR BOROUGH, SEA GIRT BOROUGH, TOMS RIVER TOWNSHIP, MANASQUAN BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2028
46		BELMAR BOROUGH, WALL TOWNSHIP, SPRING LAKE HEIGHTS BOROUGH, SPRING LAKE BOROUGH, LAKE COMO BOROUGH, MANASQUAN BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2028
47		WEST LONG BRANCH BOROUGH, LONG BRANCH CITY, OCEAN TOWNSHIP, OCEANPORT BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2028
48		EATONTOWN BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2028

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
49		OCEANPORT BOROUGH, EATONTOWN BOROUGH, SHREWSBURY BOROUGH, SHREWSBURY TOWNSHIP, TINTON FALLS BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2028
50		OCEAN TOWNSHIP, POINT PLEASANT BOROUGH, BRICK TOWNSHIP, NORTH HANOVER TOWNSHIP, HOWELL TOWNSHIP, LAKEWOOD TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2028
51		OCEAN TOWNSHIP, SOUTH TOMS RIVER BOROUGH, TOMS RIVER TOWNSHIP, POINT PLEASANT BOROUGH, BERKELEY TOWNSHIP, BRICK TOWNSHIP, LONG BRANCH CITY, WALL TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2028
52		MIDDLETOWN TOWNSHIP, RED BANK BOROUGH, TINTON FALLS BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2028
53		TOMS RIVER TOWNSHIP, SOUTH TOMS RIVER BOROUGH, BEACHWOOD BOROUGH, BERKELEY TOWNSHIP, ISLAND HEIGHTS BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	SECOND HALF OF 2028
TOTAL 2028	COSTS	\$ 3,021,972				
		MODERNIZE	PROTECTIVE EQUIPM	IENT: UFLS 2029		
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE	
54		JACKSON TOWNSHIP, NORTH HANOVER TOWNSHIP, SPRINGFIELD TOWNSHIP, PLUMSTED TOWNSHIP, NEW HANOVER TOWNSHIP, WRIGHTSTOWN BOROUGH, OCEAN TOWNSHIP, CHESTERFIELD TOWNSHIP, MANSFIELD TOWNSHIP, PEMBERTON TOWNSHIP, PEMBERTON BOROUGH	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2029	
55		SPRINGFIELD TOWNSHIP, WRIGHTSTOWN BOROUGH, PEMBERTON BOROUGH, SOUTHAMPTON TOWNSHIP, PEMBERTON TOWNSHIP, NEW HANOVER TOWNSHIP, WOODLAND TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2029	
56		WOODLAND TOWNSHIP, PEMBERTON TOWNSHIP, NEW PROVIDENCE BOROUGH, PEMBERTON BOROUGH, SOUTHAMPTON TOWNSHIP	REPLACE OLDER ELECTROMECHANICAL STYLE RELAYS (MDF & SFF) WITH NEWER MICROPROCESSOR SEL RELAYS.	ENHANCE DISTRIBUTION SYSTEM RELIABILITY AND RESILIENCY BY REPLACING MECHANICAL RELAYING EQUIPMENT WITH NEW TECHNOLOGY, THAT WILL PROVIDE INCREASED MONITORING AND PROTECTION.	\$ 251,831	FIRST HALF OF 2029	
TOTAL 2029	FOTAL 2029 COSTS						

A FirstEnergy (OG Mparty		RTU UPGRADES 2024			
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
1		BERKELEY HEIGHTS TOWNSHIP, CHATHAM BOROUGH, CHATHAM TOWNSHIP, MORRIS TOWNSHIP, NEW PROVIDENCE BOROUGH, SPARTA TOWNSHIP, WARREN TOWNSHIP, WATCHUNG BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024
2		ALLAMUCHY TOWNSHIP,ANDOVER BOROUGH,DELAWARE TOWNSHIP,FRELINGHUYSEN TOWNSHIP,GREEN TOWNSHIP,HACKETTSTOWN TOWN,INDEPENDENCE TOWNSHIP,LIBERTY TOWNSHIP,MOUNT OLIVE TOWNSHIP,READINGTON TOWNSHIP,WASHINGTON BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024
3		ALEXANDRIA TOWNSHIP, CLINTON TOWNSHIP, DELAWARE TOWNSHIP, FLEMINGTON BOROUGH, FRANKLIN TOWNSHIP, FRENCHTOWN BOROUGH, KINGWOOD TOWNSHIP, RARITAN TOWNSHIP, STOCKTON BOROUGH, UNION TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024
4		LONG BRANCH CITY,MONMOUTH BEACH BOROUGH,NEPTUNE TOWNSHIP,OCEAN TOWNSHIP,WEST LONG BRANCH BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024
5		BOONTON TOWNSHIP, DENVILLE TOWNSHIP, RANDOLPH TOWNSHIP, ROCKAWAY BOROUGH, ROCKAWAY TOWNSHIP, WASHINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
6		BEDMINSTER TOWNSHIP,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,BRIDGEWATER TOWNSHIP,CHATHAM TOWNSHIP,FAR HILLS BOROUGH,MENDHAM TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024
7		BRICK TOWNSHIP,LAKEWOOD TOWNSHIP,TOMS RIVER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024
8		BEDMINSTER TOWNSHIP,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,BRIDGEWATER TOWNSHIP,HARDING TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024
9		CALIFON BOROUGH, CHESTER BOROUGH, CHESTER TOWNSHIP, LEBANON TOWNSHIP, MENDHAM BOROUGH, MENDHAM TOWNSHIP, MOUNT OLIVE TOWNSHIP, PHILLIPSBURG TOWN, RANDOLPH TOWNSHIP, SUMMIT CITY, WASHINGTON BOROUGH, WASHINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2024
10		COLTS NECK TOWNSHIP,FREEHOLD BOROUGH,FREEHOLD TOWNSHIP,HOLMDEL TOWNSHIP,MANALAPAN TOWNSHIP,MARLBORO TOWNSHIP,OLD BRIDGE TOWNSHIP,TINTON FALLS BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330 \$ 4,603,300	SECOND HALF OF 2024
TOTAL 2024 COSTS RTU UPGRADES 2025						

A FirstEnergy C Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
11		NEPTUNE CITY BOROUGH,NEPTUNE TOWNSHIP,WALL TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025
12		DOVER TOWN,RANDOLPH TOWNSHIP,ROCKAWAY BOROUGH,ROCKAWAY TOWNSHIP,TEWKSBURY TOWNSHIP,VICTORY GARDENS BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025
13		HACKETTSTOWN TOWN,LEBANON TOWNSHIP,MOUNT OLIVE TOWNSHIP,ROXBURY TOWNSHIP,WASHINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025
14		ANDOVER BOROUGH,ANDOVER TOWNSHIP,BERNARDS TOWNSHIP,FREDON TOWNSHIP,GREEN TOWNSHIP,HAMPTON TOWNSHIP,NEWTON TOWN,SPARTA TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025
15		DENVILLE TOWNSHIP,DOVER TOWN,MINE HILL TOWNSHIP,ROCKAWAY BOROUGH,ROCKAWAY TOWNSHIP,ROXBURY TOWNSHIP,WHARTON BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
16		MIDDLETOWN TOWNSHIP,RED BANK BOROUGH,TINTON FALLS BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025
17		FLORHAM PARK BOROUGH,MORRIS TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025
18		CHESTER TOWNSHIP,HACKETTSTOWN TOWN,JACKSON TOWNSHIP,MOUNT OLIVE TOWNSHIP,ROXBURY TOWNSHIP,WASHINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025
19		ROCKAWAY BOROUGH,ROCKAWAY TOWNSHIP,WHARTON BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025
20		ROCKAWAY BOROUGH,ROCKAWAY TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2025

A FirstEnergy C Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
21		BOONTON TOWNSHIP, DENVILLE TOWNSHIP, HANOVER TOWNSHIP, MORRIS PLAINS BOROUGH, MOUNTAIN LAKES BOROUGH, PARSIPPANY TROY HILLS TOWNSHIP, RANDOLPH TOWNSHIP, WHITE TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
22		ALEXANDRIA TOWNSHIP,FRANKLIN TOWNSHIP,FRENCHTOWN BOROUGH,HOLLAND TOWNSHIP,KINGWOOD TOWNSHIP,MILFORD BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
23		BELMAR BOROUGH,LAKE COMO BOROUGH,NEPTUNE CITY BOROUGH,NEPTUNE TOWNSHIP,TOMS RIVER TOWNSHIP,WALL TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
24		BEDMINSTER TOWNSHIP,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,BRIDGEWATER TOWNSHIP,FAR HILLS BOROUGH,LEBANON TOWNSHIP,READINGTON TOWNSHIP,TEWKSBURY TOWNSHIP,TOMS RIVER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
25		CHATHAM BOROUGH,CHATHAM TOWNSHIP,HARDING TOWNSHIP,MORRISTOWN TOWN,NEPTUNE TOWNSHIP,ROCKAWAY TOWNSHIP,SUMMIT CITY	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
26		DENVILLE TOWNSHIP,HARDING TOWNSHIP,MENDHAM TOWNSHIP,MORRIS PLAINS BOROUGH,MORRIS TOWNSHIP,MORRISTOWN TOWN,PARSIPPANY TROY HILLS TOWNSHIP,RANDOLPH TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
27		BRICK TOWNSHIP,OCEAN TOWNSHIP,POINT PLEASANT BEACH BOROUGH,POINT PLEASANT BOROUGH,WALL TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
28		ATLANTIC HIGHLANDS BOROUGH,HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
29		BERKELEY TOWNSHIP,LAKEWOOD TOWNSHIP,LONG BRANCH CITY,MANCHESTER TOWNSHIP,OCEAN TOWNSHIP,SOUTH TOMS RIVER BOROUGH,TOMS RIVER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
30		CHESTERFIELD TOWNSHIP, JACKSON TOWNSHIP, MANCHESTER TOWNSHIP, MILLSTONE TOWNSHIP, NEW HANOVER TOWNSHIP, NORTH HANOVER TOWNSHIP, OCEAN TOWNSHIP, PLUMSTED TOWNSHIP, UPPER FREEHOLD TOWNSHIP, WRIGHTSTOWN BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2025
TOTAL 2025 COSTS						
			RTU UPGRADES 2026			

A FirstEnergy C Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
31		ANDOVER BOROUGH,ANDOVER TOWNSHIP,LAFAYETTE TOWNSHIP,NEWTON TOWN,SPARTA TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2026
32		KINNELON BOROUGH,LINCOLN PARK BOROUGH,MONTVILLE TOWNSHIP,PEQUANNOCK TOWNSHIP,POMPTON LAKES BOROUGH,WANAQUE BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2026
33		FREEHOLD BOROUGH,FREEHOLD TOWNSHIP,HOWELL TOWNSHIP,MANALAPAN TOWNSHIP,MARLBORO TOWNSHIP,OLD BRIDGE TOWNSHIP,UPPER FREEHOLD TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2026
34		BERKELEY TOWNSHIP,LACEY TOWNSHIP,LAKEWOOD TOWNSHIP,MANCHESTER TOWNSHIP,OCEAN TOWNSHIP,SHREWSBURY BOROUGH,SOUTHAMPTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2026
35		BERKELEY TOWNSHIP,FARMINGDALE BOROUGH,JACKSON TOWNSHIP,LACEY TOWNSHIP,LAKEHURST BOROUGH,LAKEWOOD TOWNSHIP,MANCHESTER TOWNSHIP,SOUTH TOMS RIVER BOROUGH,TOMS RIVER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2026

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
36		BRANCHBURG TOWNSHIP,CLINTON TOWN,CLINTON TOWNSHIP,LEBANON BOROUGH,LEBANON TOWNSHIP,RARITAN TOWNSHIP,READINGTON TOWNSHIP,TEWKSBURY TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2026
37		BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,BRIDGEWATER TOWNSHIP,HARDING TOWNSHIP,WARREN TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2026
38		BRICK TOWNSHIP, MANTOLOKING BOROUGH, TOMS RIVER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2026
39		CHESTERFIELD TOWNSHIP, JACKSON TOWNSHIP, MANSFIELD TOWNSHIP, NEW HANOVER TOWNSHIP, NORTH HANOVER TOWNSHIP, OCEAN TOWNSHIP, PEMBERTON BOROUGH, PEMBERTON TOWNSHIP, PLUMSTED TOWNSHIP, SPRINGFIELD TOWNSHIP, WRIGHTSTOWN BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2026

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
40		BERNARDS TOWNSHIP, BERNARDSVILLE BOROUGH, CHESTER TOWNSHIP, DOVER TOWN, FLEMINGTON BOROUGH, HARDING TOWNSHIP, HOLLAND TOWNSHIP, MENDHAM BOROUGH, MENDHAM TOWNSHIP, MORRIS TOWNSHIP, MORRISTOWN TOWN, PEAPACK AND GLADSTONE BOROUGH, RANDOLPH TOWNSHIP, SUMMIT CITY UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA. ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.		\$ 460,330	SECOND HALF OF 2026	
TOTAL 2026	COSTS				\$ 4,603,300	
			RTU UPGRADES 2027			
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
41		ANDOVER BOROUGH,ANDOVER TOWNSHIP,BYRAM TOWNSHIP,HARDYSTON TOWNSHIP,HOPATCONG BOROUGH,SPARTA TOWNSHIP,STANHOPE BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027
42		MIDDLETOWN TOWNSHIP,RED BANK BOROUGH,SHREWSBURY BOROUGH,SHREWSBURY TOWNSHIP,TINTON FALLS BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027
43		CHATHAM TOWNSHIP,EAST HANOVER TOWNSHIP,FLORHAM PARK BOROUGH,HANOVER TOWNSHIP,HARDING TOWNSHIP,MENDHAM TOWNSHIP,MORRIS TOWNSHIP,MORRISTOWN TOWN,MOUNT ARLINGTON BOROUGH,SPRINGFIELD TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027

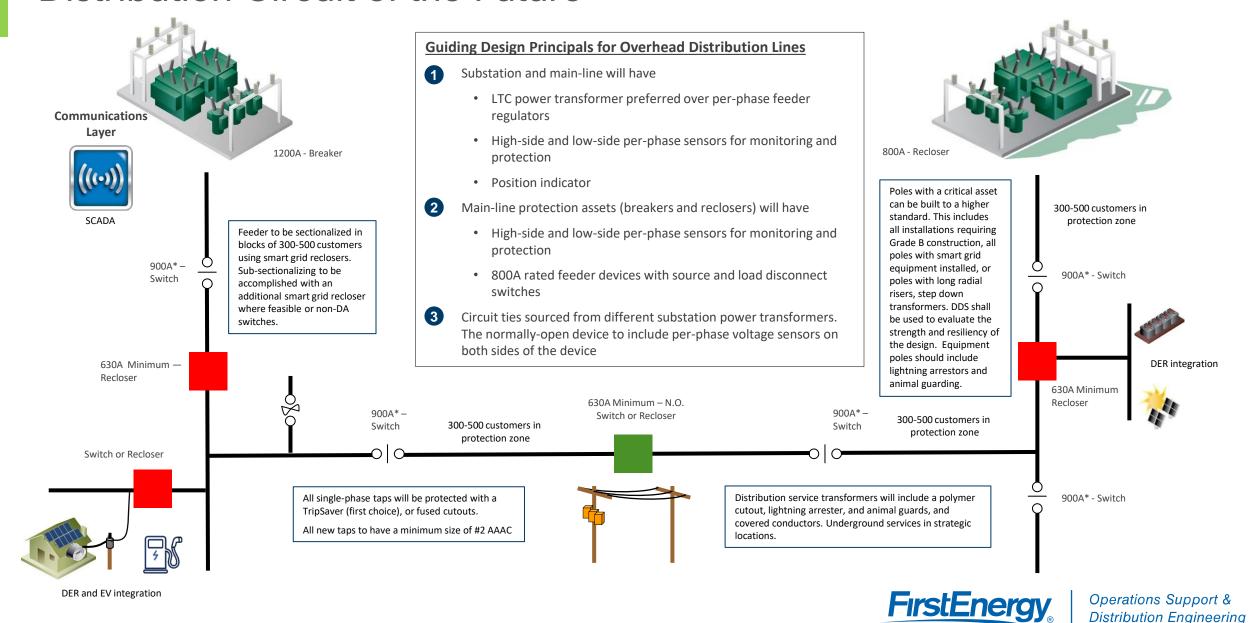
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
44		BERNARDS TOWNSHIP,GREEN BROOK TOWNSHIP,MILLBURN TOWNSHIP,WARREN TOWNSHIP,WATCHUNG BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027
45		ANDOVER TOWNSHIP,FRANKFORD TOWNSHIP,FREDON TOWNSHIP,HAMPTON TOWNSHIP,HARDING TOWNSHIP,HARDYSTON TOWNSHIP,LAFAYETTE TOWNSHIP,NEWTON TOWN,STILLWATER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027
46		BRANCHBURG TOWNSHIP,EAST AMWELL TOWNSHIP,FLEMINGTON BOROUGH,HILLSBOROUGH TOWNSHIP,RARITAN TOWNSHIP,READINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027
47		ANDOVER TOWNSHIP, BYRAM TOWNSHIP, CHESTER TOWNSHIP, HOPATCONG BOROUGH, MOUNT OLIVE TOWNSHIP, NETCONG BOROUGH, ROXBURY TOWNSHIP, STANHOPE BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027
48		ALLAMUCHY TOWNSHIP,BRANCHBURG TOWNSHIP,CLINTON TOWNSHIP,FLEMINGTON BOROUGH,RARITAN TOWNSHIP,READINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027

A FirstEnergy C Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
49		BERKELEY TOWNSHIP,BRICK TOWNSHIP,LAVALLETTE BOROUGH,TOMS RIVER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027
50		ALEXANDRIA TOWNSHIP,BETHLEHEM TOWNSHIP,FRANKLIN TOWNSHIP,HAMPTON BOROUGH,HIGH BRIDGE BOROUGH,INDEPENDENCE TOWNSHIP,LEBANON TOWNSHIP,MANSFIELD TOWNSHIP,MILFORD BOROUGH,UNION TOWNSHIP,WASHINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2027
51		BERKELEY TOWNSHIP,LAKEWOOD TOWNSHIP,MANCHESTER TOWNSHIP,OCEAN TOWNSHIP,SOUTH TOMS RIVER BOROUGH,TOMS RIVER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027
52		ASBURY PARK CITY,BERKELEY TOWNSHIP,DEAL BOROUGH,EATONTOWN BOROUGH,HOWELL TOWNSHIP,LONG BRANCH CITY,NEPTUNE TOWNSHIP,OCEAN TOWNSHIP,TINTON FALLS BOROUGH,WEST LONG BRANCH BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027
53		ALLAMUCHY TOWNSHIP, GLEN GARDNER BOROUGH, HAMPTON BOROUGH, INDEPENDENCE TOWNSHIP, LEBANON TOWNSHIP, LONG HILL TOWNSHIP, MANSFIELD TOWNSHIP, MOUNT OLIVE TOWNSHIP, OXFORD TOWNSHIP, WASHINGTON BOROUGH, WASHINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027

A FirstEnergy C Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
54		BEDMINSTER TOWNSHIP,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,CHATHAM TOWNSHIP,HARDING TOWNSHIP,MENDHAM TOWNSHIP,MORRIS TOWNSHIP,MORRISTOWN TOWN	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027
55		OLD BRIDGE TOWNSHIP,SAYREVILLE BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027
56		BEDMINSTER TOWNSHIP,BERNARDS TOWNSHIP,BERNARDSVILLE BOROUGH,BRANCHBURG TOWNSHIP,BRIDGEWATER TOWNSHIP,FAR HILLS BOROUGH,HARDING TOWNSHIP,SUMMIT CITY	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027
57		CRANBURY TOWNSHIP,EAST BRUNSWICK TOWNSHIP,EAST WINDSOR TOWNSHIP,HELMETTA BOROUGH,JAMESBURG BOROUGH,MONROE TOWNSHIP,OLD BRIDGE TOWNSHIP,SOUTH BRUNSWICK TOWNSHIP,SPOTSWOOD BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027
58		CLINTON TOWNSHIP,FLEMINGTON BOROUGH,FRANKLIN TOWNSHIP,LEBANON BOROUGH,LEBANON TOWNSHIP,RARITAN TOWNSHIP,READINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
59		ATLANTIC HIGHLANDS BOROUGH,HIGHLANDS BOROUGH,MIDDLETOWN TOWNSHIP,RED BANK BOROUGH,RUMSON BOROUGH	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027
60		BRANCHVILLE BOROUGH, FRANKFORD TOWNSHIP, HAMBURG BOROUGH, HAMPTON TOWNSHIP, HARDYSTON TOWNSHIP, MONTAGUE TOWNSHIP, STOCKTON BOROUGH, SUSSEX BOROUGH, VERNON TOWNSHIP, WANTAGE TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2027
TOTAL 2027	COSTS				\$ 9,206,600	
			RTU UPGRADES 2028			
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
61		BOONTON TOWN,BOONTON TOWNSHIP,EAST HANOVER TOWNSHIP,KINNELON BOROUGH,MONTVILLE TOWNSHIP,PARSIPPANY TROY HILLS TOWNSHIP,ROCKAWAY BOROUGH,ROCKAWAY TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING	\$ 460,330	FIRST HALF OF 2028
		Bonoson, noor www. Townerm	VIA SCADA.	OUTAGES.		

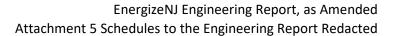
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
63		NEW PROVIDENCE BOROUGH,PEMBERTON BOROUGH,PEMBERTON TOWNSHIP,SOUTHAMPTON TOWNSHIP,WOODLAND TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2028
64		FREEHOLD BOROUGH,FREEHOLD TOWNSHIP,JACKSON TOWNSHIP,LAKEWOOD TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2028
65		FRANKLIN TOWNSHIP,HARMONY TOWNSHIP,LEBANON TOWNSHIP,MANSFIELD TOWNSHIP,OXFORD TOWNSHIP,WASHINGTON BOROUGH,WASHINGTON TOWNSHIP,WHITE TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2028
66		CLINTON TOWNSHIP, DELAWARE TOWNSHIP, EAST AMWELL TOWNSHIP, FLEMINGTON BOROUGH, FRANKLIN TOWNSHIP, FREEHOLD TOWNSHIP, RARITAN TOWNSHIP, READINGTON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2028
67		CHATHAM TOWNSHIP,HARDING TOWNSHIP,MADISON BOROUGH,MORRIS TOWNSHIP,MORRISTOWN TOWN,PARSIPPANY TROY HILLS TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2028



A FirstEnergy (Company					
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
68		ANDOVER BOROUGH,ANDOVER TOWNSHIP,HAMPTON TOWNSHIP,HARDYSTON TOWNSHIP,JEFFERSON TOWNSHIP,LAFAYETTE TOWNSHIP,ROXBURY TOWNSHIP,SPARTA TOWNSHIP,STILLWATER TOWNSHIP,VERNON TOWNSHIP,WANTAGE TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	SECOND HALF OF 2028
TOTAL 2028	3 COSTS		DTILLIDODADEO 0000		\$ 3,682,640	
			RTU UPGRADES 2029			
Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
69		RARITAN TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2029
70		FREEHOLD TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2029
71		MADISON TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2029

Location Count	LOCATION (Substation)	TOWNSHIP	DESCRIPTION	OBJECTIVE	COST ESTIMATE	PROJECTED IN- SERVICE DATE
72		BERKELEY TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2029
73		SUMMIT CITY	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2029
74		EAST HANOVER TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2029
75		MILLBURN TOWNSHIP	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2029
76		SUMMIT CITY	UPGRADE AGED AND LIMITED SUBSTATION RTU (REMOTE TERMINAL UNIT) WITH FIBER, CELLULAR AND/OR RADIO AND ADD POINTS TO ALLOW DISTRIBUTION DATA TO BE AVAILABLE VIA SCADA.	ENHANCE RELIABILITY WITH REAL-TIME POWER MONITORING OF DISTRIBUTION LOADS, VOLTAGE AND POWER FACTOR. ADVANCED RTUS AND ASSOCIATED COMMUNICATION MEDIA WILL ENHANCE SERVICE RESTORATION FOLLOWING OUTAGES.	\$ 460,330	FIRST HALF OF 2029
TOTAL 2029	COSTS				\$ 3,682,640	

Distribution Circuit of the Future



	BCA Change Log Summary							
BCA Tab / EnergizeNJ COMPONENT	CHANGE	ACTION						
Assumptions	YES	Updated engineering estimates / assumptions in the New Distribution Sources section.						
Benefits	YES	Due to changes to the following components; TripSavers, Circuit of the Future, Loops & New Distribution Sources the Interruption Cost Estimate (ICE) was re-run dictating changes to the Benefits, Budget & Filing Table tabs.						
Budget	YES							
FilingTable	YES							
JCPL Ckts	NO	-						
2018-2022 Outages	NO	-						
Grid Modernization								
Lateral Fuse Replacement with TripSaver II	YES	Please see TripSaver Change Details						
Distribution Circuit of the Future	YES	Please see Dx CktFuture Change Details						
Circuit Protection and Sectionalization	NO	-						
UG Cable Replacement	NO	-						
Selective Undergrounding	NO	-						
System Resiliency								
Distribution Voltage Standardization	NO	-						
Automatic Circuit Ties with SCADA (Loop Schemes)	YES	Please see Loop Change Details						
New Distribution Sources	YES	Please see New Source Change Details						
Distribution Automation Enablement	NO	-						
Substation Modernization								
Substation Equipment Replacements (OCB)	NO							
Modernize Protective Equipment	NO							
Replace Coastal Substation Switchgear	NO	No changes were made to the Substation Modernization category						
Remote Terminal Unit (RTU) Replacements	NO							
Mobile Substations (Narty)	NO							

	ACTI	ION			RESULT			
Details								
Removed the fo	ollowing	circuits fron	n the					
TripSaver com	ponent:							
Substation	Circuit	Site	# of	Rudget Summary	Refore	After		
Substituii	Circuit	Locations	Units					
		1	1	Total Cost (Nominal)	\$ 18,487,500	\$ 17,586,500		
		9	13	Total Benefits (Nominal)	\$ 112,697,194	\$ 121,929,485		
		4	9	*Nom BCA	6.1	6.9		
		5	12	Total Cost (NPV)	\$ 15,245,466	\$ 14,535,346		
		6	10	Total Benefits (NPV)	\$ 50,834,128	\$ 55,129,162		
		1	1	*NPV BCA	3.3	3.8		
		6	10					
		4	9	Circuit Summary	Before	After		
		0	0	Customer Count	708,482	682,136		
		6	14	TripSaver Circuit Count	500	487		
		2	4	TripSaver Site Count	1,148	1,094		
		3	6	TripSavers Number of Units	2,175	2,069		
		0	0					
		2	4	Re-ran Interruption Cost Estin	mate, ICE, due to	changes in componer		
		5	13					
		0	0	*During the review of t	his componenet c	hange, the site		
		0	0	numbers in both column	n B and M (TripS	vr_Data) were		
		0	0	trimmed removing hidden	spaces within the	text. As a result		
Total		54	106	of this function, 40 additio	nal "events" are n	ow accounted for		
				in the be	enefits pivot tab.			
	Removed the for TripSaver comparison Substation	Removed the following TripSaver component: Substation Circuit	Substation Circuit Site Locations 1 9 4 5 6 1 6 4 0 6 2 3 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Substation Circuit Site # of Locations Units	Removed the following circuits from the TripSaver component: Substation Circuit Site # of Locations Units 1	Removed the following circuits from the TripSaver component: Substation Circuit Site # of Locations Units 1		

CHANGE	ACTION				RESULT			
Distribution Circuit	of the Future Change D	etails						
	Removed the following	circuits fro	m					
	Distribution Circuit of t	he Future:						
2								
	Substation Circuit	Reclosers	Footage	Budget Summary	Before	After		
Location of change:		0	54,206	Total Cost (Nominal)	\$ 307,985,058	\$ 214,571,149		
		0	42,536	Total Benefits (Nominal)	\$ 926,059,893	\$ 610,455,285		
<u>Tab -</u>		1	94,928	Nom BCA	3.0	2.8		
CktFuture Data		1	45,432	Total Cost (NPV)	\$ 255,248,127	\$ 174,505,177		
Removed CotF		0	24,651	Total Benefits (NPV)	\$ 225,366,274	\$ 145,768,574		
circuits in		2	29,664	NPV BCA	0.9	0.8		
component		2	56,457					
		0	62,828	Circuit Summary	Before	After		
<u>Tab -</u>		0	28,188	Customer Count	301,261	260,332		
CktFuture Pivots		1	20,259	CotF Circuit Count	175	157		
Calculated new		2	160,013	Total CotF feet	3,309,855	2,170,372		
value for customers		0	154,809	Total CotF miles	627	411		
& refreshed all		1	251,700	CotF Recloser Circuit Count	103	92		
pivot tables		2	11,962	Total Number of Reclosers	170	152		
		0	48,123					
<u>Tab -</u>		2	5,401	e-ran Interruption Cost Estin	nate, ICE, due to ch	anges in componer		
CktFuture_Results		2	10,659	_				
Calculated new		2	37,668					
values into Analysis	Total	18	1,139,484					
Data								

CHANGE		ACTIO	N			RESULT			
Automatic Circuit					tia	ıls			
	Added the follo	_							
	Circuit Ties wit	th SCADA	(Loop Sch	emes):	Ι.				
	Substation	Ckt Tie	Ckt Rebuild	Footage		Budget Summary	Before		After
3						Total Cost (Nominal)	\$ 63,988,450	\$	83,444,890
Location of				11,424		Total Benefits (Nominal)	\$ 224,630,832	\$	344,301,835
change:				690		Nom BCA	3.5		4.1
omange.				3,010		Total Cost (NPV)	\$ 50,781,303	\$	68,567,716
Tab - Loop Data						Total Benefits (NPV)	\$ 97,511,356	\$	154,629,010
Added additional						NPV BCA	1.9		2.3
Loop Schemes in					l .				
component						Circuit Summary	Before		After
-						Customer Count	155,163		182,925
Tab - Loop_Pivots						Number of total projects	59		71
Calculated new						Total Circuits Tie	113		128
value for				7,600		Total Circuits Rebuild	55		65
customers &				1,446		Total Circuit Rebuild feet	485,180		577,236
refreshed all pivot				8,000		Total Circuit Rebuild miles	92		109
tables Tab - Loop_Results Calculated new values into Analysis Data		Total		17,172 11,424 4,890 26,400 92,056		Re-ran Interruption Cost	Estimate, ICE, du omponent	ae to	o changes in

CHANGE	ACTION / RESULTS						
New Distribution Sources Cha	ange Details						
	Budget Summary Before After						
	Total Cost (Nominal)	\$	69,572,181	\$	140,215,390		
	Total Benefits (Nominal)	\$	704,137,807	\$	1,170,628,887		
	Nom BCA		10.1		8.3		
	Total Cost (NPV)	\$	55,953,435	\$	112,359,295		
	Total Benefits (NPV)	\$	166,357,748	\$	275,546,657		
Summary of changes	NPV BCA		3.0		2.5		
to component							
-	Circuit Summary		Before		After		
	Customer Count		18,641		41,016		
	Toatl New Dx Circuits		3		7		
	Toal New MOD Substations		2		6		
	Total Circuit Feet		745,263		692,298		
	Total Circuit Miles		141		131		

IIP2 File	General Notes	Load Transfer	New Ties	Total Rebuild
	New Dx circuit at			347,208ft (65 miles)
Original			No	Percent of Total Ckt Miles
		to new circuit		42%
	New Dx circuit at		No	14,250ft (3 miles)
			The new circuit will	Percent of 3 Phase OH
Re-File		to new circuit	be utilized to form NEW Loop	12%
			Scheme	

Benefits - Changes to Engineering Estimates

IIP2 File	Load Transfer	Rebuild
Original		Estimate included
	Outages equaly split amongs	Z1/2/3
	all circuits in Project 2	BB Out = All
	(total ciruits 3)	CAIDI>120 = All
Re-File		Estimate included Z1/2
Ke-File		only
		BB Out $= 1$
		CAIDI>120 = 1

	Attachment 5 Schedules to the Engineering Report Reducte			
IIP2	General	Load	N T:	Total
File	Notes	Transfer	New Ties	Rebuild
Re-File	New MOD Sub	Transfer loads	No	
			Voltage	
			Conversion of	
	(Involves Voltage			
	Conversion)		will be utilitized	
		to new circuit	to form a NEW	
			Loop Scheme with	
D C1 D :	CE :			
Benefits - Revie	ew of Engineering Estimates			1
Circuit	Load Transfer	Rebui	ild	
		Split benefits per circuit rebuild		

Circuit	Load Transfer	Rebuild	
		Split benefits per circuit rebuild	
General	Split benefits per Load	a. Zone of rebuild	
Notes	Transfer per circuit	different	
		b. Estimated benefit percentage different	
	40% load transfer	Estimate included Z1/2 Only (25%)	
		BB Out $= 1$	
	Incuded substation outages	CAIDI>120=1	
		45% CotF benefit percentage	
	52% load transfer	Estimate included Z1/2/3 (54%)	
		BB Out = 0	
Voltage		CAIDI>120 = A11	
Conversion		80% Votage conversion benefit percentage	

General Notes	Load Transfer	New Ties	Total Rebuild
New Dx circuit at	Transfer loads	No	
		will	
	to new circuit	a NEW Loop	
		Scheme	
	Notes New Dx circuit at	Notes Transfer	New Dx circuit at Transfer loads No The new circuit will be utilized to form a NEW Loop

Circuit	Load Transfer	Rebuild
General Notes	Split benefits per Load Transfer per circuit	Reliability improvements will only be credited to the percentage of the feeders that are rebuilt.
	24% load transfer	Estimate included Z1/2 Only (10%)
	Distribution outages only	BB Out = 1 CAIDI>120 = 1 45% CotF benefit percentage

IIP2 File	General Notes	Load Transfer	New Ties	Total Rebuild
Re-File	New MOD Sub	Transfer loads	No	
	(Involves Voltage Conversion)	to new circuit	The new circuit will be utilized to form a NEW Loop Scheme	

Benefits - Review of Engineering Estimates

Circuit	Load Transfer	Rebuild	
		Split benefits per circuit rebuild	
General	Split benefits per Load	a. Zone of rebuild	
Notes	Transfer per circuit	different	
		b. Estimated benefit percentage different	
	59% load transfer	Estimate included Z1/2 Only (12%)	
	Distribution outages only	BB Out $= 1$	
		CAIDI>120=1	
		45% CotF benefit percentage	
	18% load transfer	Estimate included Z1/2/3 (25%)	
		BB Out = 0	
Voltage	Distribution outages only	CAIDI>120 = A11	
Conversion		80% Votage conversion benefit percentage	

IIP2 File	General Notes	Load Transfer	New Ties	Total Rebuild
Re-File	New Dx circuit at	Transfer loads	No	
			The new circuit will	
		to new circuit	be utilized to form a	
			NEW Loop Scheme	

Circuit	Load Transfer	Rebuild
General	Split banafits par I and	Reliability improvements will only be
	Split benefits per Load Transfer per circuit	credited to the percentage of the feeders
Notes		that are rebuilt.
	39% load transfer	Estimate included Z1/2 Only (13%)
		BB Out = 1
	Distribution outages only	CAIDI>120=1
		45% CotF benefit percentage

IIP2 File	General Notes	Load Transfer	New Ties	Total Rebuild
Re-File	New MOD Sub	Transfer loads	No	
			The new circuit will	
		to new circuit	be utilized to form a	
			NEW Loop Scheme	

Circuit	Load Transfer	Rebuild
General Notes	Split benefits per Load Transfer per circuit	Reliability improvements will only be credited to the percentage of the feeders that are rebuilt.
		Estimate included Z1/2/3 (3%) BB Out = All CAIDI>120 = All 45% CotF benefit percentage

IIP2	General	Load	New Ties	Total
File	Notes	Transfer		Rebuild
Re-File	New MOD Sub	Transfer loads to new circuit	No	

Benefits - Review of Engineering Estimates

Circuit	Load Transfer	Rebuild
General Notes	Split benefits per Load Transfer per circuit	Reliability improvements will only be credited to the percentage of the feeders that are rebuilt.
		Estimate included Z1/2 Only (5%) BB Out = 1 CAIDI>120 = 1 45% CotF benefit percentage

IIP2 File	General Notes	Load Transfer	New Ties	Total Rebuild
Re-File	New Dx circuit at	Transfer loads	No	
		to new circuit		

Circuit	Load Transfer	Rebuild
General	Split hanafita nar I aad	Reliability improvements will only be
Notes	Split benefits per Load Transfer per circuit	credited to the percentage of the feeders
		that are rebuilt.
	59% load transfer	Estimate included Z1/2 Only (16%)
		BB Out = 1
	Substation (U & S) &	CAIDI>120 = 1
	Distribution outages	45% CotF benefit percentage

IIP2 File	General Notes	Load Transfer	New Ties	Total Rebuild
Re-File	New Dx circuit at	Transfer loads	No	
			The new circuit will	
		to new circuit	be utilized to form a	
			NEW Loop Scheme	

Circuit	Load Transfer	Rebuild
General	Split hanafita par I and	Reliability improvements will only be
Notes	Split benefits per Load Transfer per circuit	credited to the percentage of the feeders
		that are rebuilt.
	36% load transfer	Estimate included Z1/2 Only (13%)
		BB Out = 1
	Distribution outages	CAIDI>120=1
	_	45% CotF benefit percentage

Jersey Central Power & Light Company

EnergizeNJ Infrastructure Investment Program

Amended Engineering Evaluation and Report

November 9, 2023, Amended as of February 29, 2024

Table of Contents

I. Preface1
II. Executive Summary
III. Introduction
IV. JCP&L Service Territory
Renewable Energy Penetration in the JCP&L Service Territory
V. Board Requirements for Infrastructure Investment Plans
VI. JCP&L Electric Distribution Reliability
Introduction
Reliability Overview
Recent Regulatory Changes Create an Immediate Performance Gap for JCP&L
Analysis and Quantification of the Performance Gap
Reliability and Distribution Circuit of the Future Vision
VII. EnergizeNJ Cost Benefit Analysis
Cost Estimating19
Benefit Analysis 19
VIII. The EnergizeNJ Program22
Project 1: Grid Modernization
GM Component: Lateral Fuse Replacement with TripSaver II
GM Component: Distribution Circuit of the Future
GM Component: Circuit Protection and Sectionalization
GM Component: Underground Cable Replacement
GM Component: Selective Undergrounding
Project 2: System Resiliency36
SR Component: Distribution Voltage Standardization
SR Component: New Distribution Sources40
SR Component: Automatic Circuit Ties with SCADA (Loop Schemes)
SR Component: Distribution Automation Enablement ("DA Enablement")
Project 3: Substation Modernization ("SM")
SM Component: Replace Coastal Substation Switchgear48
SM Component: Oil Circuit Breaker (OCB) Replacements
SM Component: Modernize Protective Equipment
SM Component: Remote Terminal Unit (RTU) Replacements
SM Component: Mobile Substations54
IX. Conclusion

I. Preface

In accordance with the Stipulation of Settlement approved by the Board of Public Utilities ("Board" or "BPU") on February 14, 2024 in Jersey Central Power & Light Company's ("JCP&L" or "Company") 2023 Base Rate Filing proceeding in BPU Docket No. ER23030144 (the "Stipulation"), the Signatory Parties agreed that the Company would amend the original EnergizeNJ Petition by February 29, 2024 to reflect certain revisions as set forth in paragraphs 32-34 of the Stipulation. While the substance of these changes is described and explained in the amended direct testimony of Dana I. Gibellino (Exhibit JC-2 (Amended)), the engineering and programmatic aspects of the changes are contained herein and are set forth in the sections and attachments to the Engineering Report, as amended, and set forth and shown in the Benefit-Cost Analysis Change Log (Attachment 5).

I.— Executive Summary	
H.—Introduction	
HIJCP&L Service Territory.	
Renewable Energy Penetration in the JCP&L Service Territory	
IV. Board Requirements for Infrastructure Investment Plans	
V.—JCP&L Electric Distribution Reliability	
Introduction	
Reliability Overview	
Recent Regulatory Changes Create an Immediate Performance Gap for JCP&L	
Analysis and Quantification of the Performance Gap	
Reliability and Distribution Circuit of the Future Vision	
VI. EnergizeNJ Cost Benefit Analysis	
Cost Estimating.	
Benefit Analysis	17
VII. The EnergizeNJ Program	
Project 1: Grid Modernization	
GM Component: Lateral Fuse Replacement with TripSaver II	23
GM Component: Distribution Circuit of the Future	
GM Component: Circuit Protection and Sectionalization	
GM Component: Underground Cable Replacement	
GM Component: Selective Undergrounding	32
Project 2: System Resiliency	33
SR Component: Distribution Voltage Standardization	35
SR Component: New Distribution Sources	
SR Component: Automatic Circuit Ties with SCADA (Loop Schemes)	
SR Component: Distribution Automation Enablement ("DA Enablement")	
Project 3: Substation Modernization ("SM")	
SM Component: Replace Coastal Substation Switchgear	
SM Component: Oil Circuit Breaker (OCB) Replacements	
SM Component: Modernize Protective Equipment	
SM Component: Remote Terminal Unit (RTU) Replacements	49
SM Component: Mobile Substations	
VIII. Conclusion	
ATTACHMENT 1	

JCP&L EnergizeNJ Engineering Report Appendix B

Northern Region Description	5/1
Northern Region Description.	
Central Region Description	5/1
Central Region Description.	

LII. Executive Summary

The electric industry has undergone, and continues to undergo, paradigm shifts that emphasize innovation, technology, and increasing electrification in response to new, expanding, or higher needs and demands for electric service by all categories of customers. Regulation has also been evolving, and continues to evolve, to accommodate or stimulate changes that better facilitate the new paradigms to better respond to such customer needs. For instance, the state of New Jersey has some of the most aggressive energy goals across the nation built into its Energy Master Plan. With those goals, come challenges for the State's utility industry. Jersey Central Power & Light Company ("JCP&L" or "Company") is not excluded from such challenges. The Company's electric infrastructure across its-predominantly suburban and rural service territory footprint was built primarily with radial infrastructure across the span of more than 100 years and, at its start, as parts of over 70 different electric utility companies. This set of legacy design components pose headwinds for the Company as it addresses the evolving demands. The Company believes that its initial Infrastructure Investment Program ("IIP"), called Reliability Plus, was effective in its distinct areas of focus. The lessons learned from the Reliability Plus focus coupled with a realistic view of the original and prudent design of its electric system, the evolving reliability standards and the current and future demands of increasing electrification have led JCP&L to a more comprehensive vision for the structure and aim of its near- and long-term infrastructure investment strategy. That strategy is best and most simply expressed conceptually as a commitment to JCP&L's Distribution Circuit of the Future. As conceived by JCP&L, this second IIP proposal, referred to as EnergizeNJ, is intended to embody the structure and aim of that strategy with, as shall be explained further herein, both an immediate short-term focus on reliability performance improvement and a long-term commitment to systemic transformation through tactical distribution system modernization.

JCP&L's EnergizeNJ (also referred to as the "Program") builds over a five-year term to a total investment of \$931M935M to lay a foundation for, and to jump-start the Circuit of the Future commitment, where redundancy (circuit tie capacity), distributed energy resource ("DER") accommodation, and advanced analytics and modeling are all readily available. In addition, the shorter-term focus of EnergizeNJ addresses recent adverse reliability performance trending and an anticipated possible performance gap arising in connection with the Board of Public Utilities ("BPU" or "Board") recent adoption of revised reliability standards and related changes. This Program, as proposed, takes a measured and layered approach to improving the overall customer experience.

More specifically, within this plan, there are three main projects, including Grid Modernization, System Resiliency, and Substation Modernization. This Program, and the projects and component projects within it, have been conceived to lay a foundation for, and to jump-start the Circuit of the Future commitment, while closing the estimated reliability performance gap, based on historical system performance and a detailed review of opportunities for outage avoidance and reduced outage duration. The Grid Modernization project lays the infrastructure foundation for circuit

capacity upgrades, including not only upgraded distribution overhead conductors, but the installation of reclosing technologies and more resilient hardware to offset historically sustained outages. The System Resiliency project is focused on opportunities to shorten the duration of outages, through added technology and secure device communication, in combination with further conductor and hardware upgrades to add tie capability and operational flexibility. Lastly, the Substation Modernization project is focused on a combination of both substation infrastructure and added technology to provide the distribution system operators and engineers improved telemetry and modeling capabilities for short-term decision making and long-term planning.

Importantly, foundation-setting, reliability and resiliency are not the only benefits of this proposed Program; advancing energy goals are also woven into the qualitative benefits of this program. Where capacity is being added, it is expected to make way for additional DER integration across the JCP&L system. Added technologies captured within this proposed plan will enable realization of the Circuit of the Future vision, which will be explored in detail within this Engineering Evaluation and Report ("Engineering Report" or "Report"), and which provides the outline of the roadmap toward fully integrated grid operations across JCP&L.

This Engineering Report will serve to explore each project named above in greater detail and will demonstrate that the Benefit to Cost Ratio of the work within this proposal is greater than 1.0, with an expected societal benefit of \$937847 million, representing significant value to the customers and communities that JCP&L serves across the State of New Jersey.

H.—Introduction

III.

Pursuant to the requirements of the New Jersey Administrative Code ("N.J.A.C.") 14:3-2A.1 *et seq.*, JCP&L has prepared this Engineering Report in support of its proposed Program as Appendix A to the testimony of Dana I. Gibellino, which is Exhibit JC-2 to the Petition for approval filed by the Company with the BPU. JCP&L is actively engaged and diligently committed to providing safe, adequate and proper service to its customers, including by continuing to perform in a manner that results in satisfactory and cost-effective reliability performance for its customers. Historically, JCP&L has largely succeeded in maintaining electric distribution system reliability in accordance with the minimums and benchmark reliability indices such as System Average

Interruption Frequency Index ("SAIFI"), and Customer Average Interruption Duration Index ("CAIDI"), against which its performance has been measured by the BPU.

The Board's Infrastructure Investment and Recovery Rules ("II&R Rules") provide an opportunity for increased Company spending to accelerate projects beyond what historically has been required for system reliability, resiliency, and safety. In the Company's view, it is now appropriate to pursue a second IIP² in order to set the foundation for the Company's Distribution Circuit of the Future vision, through a portfolio of accelerated capital projects that are intended to upgrade the electric distribution system with an eye to the future by incorporating new equipment, reflecting currently available technology, while at the same time enhancing in the near term, overall system reliability, resiliency and safety that will also respond to the Board's updated definition of Major Events, reliability standards changes, and evolving customer expectations. Ultimately, JCP&L plans to utilize this second IIP to drive incremental reliability improvements through an accelerated programmatic modernization of the distribution system, which will jump-start its strategic commitment through tactical foundation projects.

IV. JCP&L Service Territory

As described in more detail below, JCP&L provides electric service to more than 1 million residential, commercial, and industrial customers in two geographically separate regions. The Central New Jersey Region ("CNJ" or "Central Region") is based in Holmdel, New Jersey and the Northern New Jersey Region ("NNJ" or "Northern Region") is based in Morristown, New Jersey (collectively "Regions"). *See* Figure 1 below.

The 3,312 square miles of the Company's service territory is comprised of 13 counties and 23234 municipalities. The Central Region is located in central coastal New Jersey, and the Northern Region is located in the heavily forested northwestern portion of the State. In turn, these two

¹ CAIDI depicts average outage duration per customer. SAIFI calculates the frequency of outages on a customer basis. Another measure, System Average Interruption Duration Index ("SAIDI"), which is measured in time – usually minutes or hours. Although SAIDI is not part of the set of regulatory reliability measures, it also provides a view of outage duration on the system. SAIDI is calculated by dividing the sum of all customer outage durations by the number of customers served. Thought of another way, it is the product of multiplying CAIDI by SAIFI. In this Report, the measure is in minutes.

² On July 13, 2018, the Company filed its first petition to BPU Docket No. E018070728 seeking approval to implement its proposed Reliability Plus Infrastructure Investment Program ("Reliability Plus"), including its cost recovery mechanism, pursuant to II&R Rules. The BPU issued an order dated May 8, 2019, approving a stipulation of settlement with respect to the parameters of the initial Reliability Plus program, which the Company implemented and completed during 2020. The May 8, 2019 Order can be accessed at https://www.nj.gov/bpu/pdf/boardorders/2019/20190508/5-8-19-2B.pdf.

regions are comprised of a total of fourteen operating districts. JCP&L employs approximately 1,360 personnel across its operating districts. JCP&L provides electric distribution service to approximately 25% of the metered electric customers in New Jersey. The JCP&L service territory includes approximately 45% of the municipalities in the State of New Jersey. Indeed, the JCP&L service territory is vast and diverse in terms of customer demographics and terrain.

The Company owns, operates, and maintains over 35,000 conductor miles of primary distribution circuits, over 1,800 circuit miles (5,469 conductor miles) of sub-transmission circuits, in excess of 340,000 JCP&L-owned poles and approximately 250,000 transformers. JCP&L owns, operates, and maintains 339 substations, 244 sub-transmission circuits, and 1,162 primary distribution circuits.

The JCP&L distribution system is mainly a 12.47 kilovolt ("kV") multi-grounded wye system. Circuits operating at this voltage make up approximately 55% of the circuits throughout JCP&L's distribution system serving approximately 73% of its customers. Other primary voltages include 4.16kV wye, 4.8kV delta (together, serving approximately 23% of JCP&L's customers) and 34.5kV wye, which serves approximately 4% of JCP&L's customers. A more detailed description of JCP&L's two operating areas – the Northern Region and the Central Region are provided in Attachment 1 hereto.

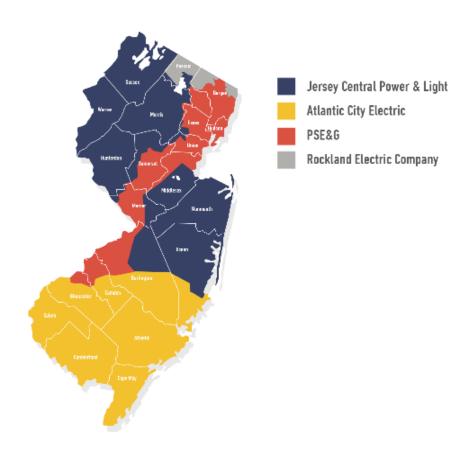


Figure 1: New Jersey EDC Map

Renewable Energy Penetration in the JCP&L Service Territory³

Renewable distributed generation continues to have a significant presence in New Jersey, including the JCP&L service territory. As of December 31, 2022, there was a total of 47,483 retail net metered customers on the JCP&L system with a combined nameplate capacity of 795.8 megawatts ("MW") of renewable generation and an additional sixty-nine wholesale grid connected generators and battery storage locations with a combined nameplate capacity of 586.4 MW, connected 69 kV or less. Figure 2 below highlights the growth of class 1 renewables specifically.

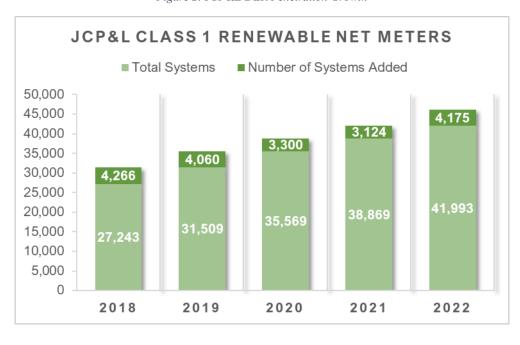


Figure 2: JCP&L DER Penetration Growth

³ The Company also notes there is a robust interest in cannabis growing facilities across the entire JCP&L service territory footprint, where developers are converting abandoned warehouse space and retail box store locations into these facilities.

V. Board Requirements for Infrastructure Investment Plans

This Engineering Report is provided to address the third requirement of the II&R Rules listed below at N.J.A.C. 14:3-2A.5(b)3, which provides the petition requirements for an IIP to include within its petition as follows:

- 1. Projected annual capital expenditure budgets for a five-year period, identified by major categories of expenditures;
- 2. Actual annual capital expenditures for the previous five years, identified by major categories of expenditures;
- 3. An engineering evaluation and report identifying the specific projects to be included in the proposed Infrastructure Investment Program, with descriptions of project objectives-including the specific expected resilience benefits, detailed cost estimates, in service dates, and any applicable cost-benefit analysis for each project;
- 4. An Infrastructure Investment Program budget setting forth annual budget expenditures;
- 5. A proposal addressing when the utility intends to file its next base rate case, consistent with N.J.A.C. 14:3-2A.6(f);
- 6. Proposed annual baseline spending levels, consistent with N.J.A.C. 14:3-2A.3(a) and (b);
- 7. The maximum dollar amount, in aggregate, the utility seeks to recover through the Infrastructure Investment Program; and
- 8. The estimated rate impact of the proposed Infrastructure Investment Program on customers.

Each of these requirements is addressed in the JCP&L EnergizeNJ filing. In addition to requirement 3 above, this Report also provides support in connection with aspects of requirements 1, 2, 4, 5 and 6.

VI. JCP&L Electric Distribution Reliability

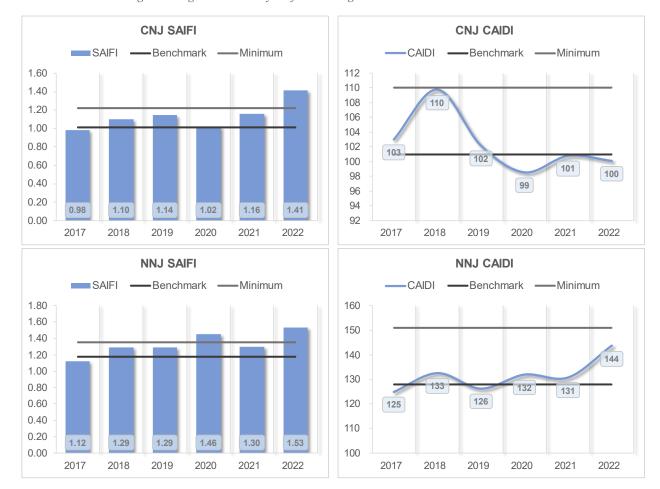
Introduction

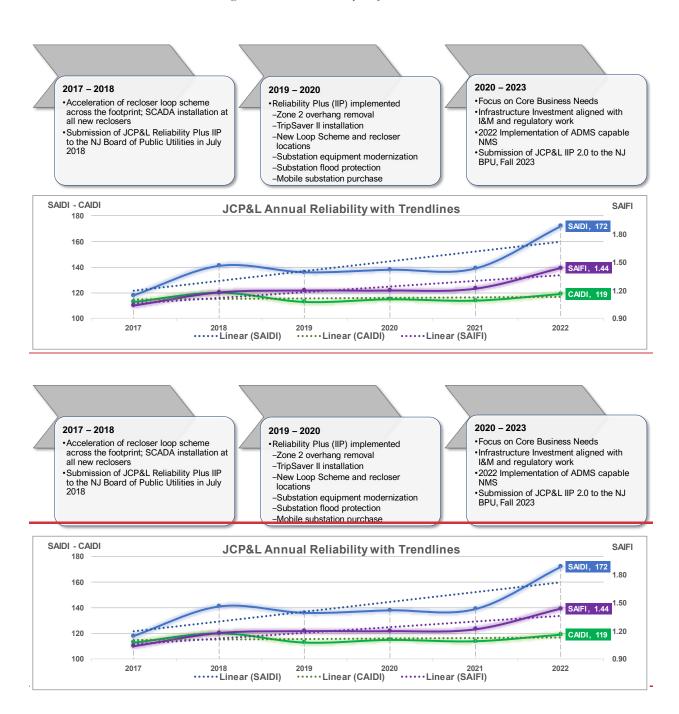
As indicated earlier, the proposal to undertake EnergizeNJ at this time is driven by several factors. Among them is the Company's recent past reliability performance, as well as consideration of the challenges that are faced in improving this performance over the long term. These challenges include the facts and circumstances regarding the Company's electric system and its prior performance, an appropriate perspective about the evolving standards against which its ongoing performance will likely be measured, as well as reasonable and available means and mechanisms to meet such standards. At the outset, it is necessary to make an assessment of the Company's reliability performance, and the impacts of, and lessons learned from, the Company's initial Reliability Plus program.

Reliability Overview

Since 2017, JCP&L's performance against the applicable reliability indices has trended unfavorably (upward), even though JCP&L's reliability performance has met at least the

applicable minimum performance requirements, except for the Company's SAIFI performance in 2020 and 2022 (*see* Figure 3 below). With the exception of the NNJ Region's 2020 SAIFI, and both Regions' 2022 SAIFI performance, the Company has otherwise performed better than the Board's minimum reliability levels over the past decade.




Figure 3: Regional Reliability Performance Against Benchmark and Minimum Levels

The Company has analyzed and considered the circumstances of this performance, including consideration of climate change on the concept of minor weather days and the impacts of major projects on the transmission system with anticipated longer range positive impacts but shorter-term reliability risks associated with the effects of the projects on distribution system configurations, which temporarily increase the risk of outages.

The Company has also considered the performance impacts of <u>JCPJ/CP</u>&L's Reliability Plus investments, which JCP&L has concluded have demonstrated outage avoidance since the Reliability Plus program's completion (meaning without such investments, the Company's reliability performance in 2020-2022 may have been *worse than achieved*). In this regard, Figure

4 illustrates the initiatives and programs, including the initial Reliability Plus program, the Company has undertaken since 2017.

Figure 4: JCP&L Reliability Performance Trends

As depicted in Figure 4 above, over the last five years, including Reliability Plus, JCP&L has made investments to address current circumstances, including the negative trends. With EnergizeNJ, the Company seeks not only to accelerate investments, but also to drive toward its strategic vision in which EnergizeNJ serves as an initial stepping-stone towards creating a platform for more than incremental operational and reliability improvements over time, as well as transformational change to the distribution system.

Looking at current reliability trends and ahead to the implications of those trends, customer demands and a need to begin to prepare the electric distribution system for the transition to greener, renewable DER continue to drive the need for improved reliability and accelerated system modernization. In the past three years since the global COVID-19 pandemic, more customers are working from home and relying on their electric service to perform their day-to-day jobs. According to US Census Bureau data, the percentage of New Jersey residents working from home has increased from about 5% in 2019 up to 22% in 2021. Adding consideration for electric vehicle ("EV") initiatives, as well as manufacturing and infrastructure development and trends, it is logical to anticipate further increases in customer expectations regarding the quality of the residential reliability experience to accommodate a changing work and lifestyle environment for many, if not most, New Jersey residents.

⁴Figure 5: Distribution System Increasingly Find More Distributed Energy Resources

With respect to DER, given the State's energy goals, JCP&L not only continues to see growth in the amount of DER implementation across its footprint, but reasonably anticipates this trend to continue, given New Jersey's clean energy goals. As described in the Company's 2022 Annual System Performance Report ("ASPR"), at the close of 2022, there were a total of 47,483 retail net-

⁴ Storage and Distribution Generation Engineering Guide. EPRI, Palo Alto, CA: 2022. 3002023483. §1-2.

metered customers on the JCP&L system and an additional sixty-nine wholesale grid connected generators and battery storage locations connected at 69 kV or less. The current levels of DER equate to about one in every twenty-three customers having solar panels behind the meter and this increasing trend (up from one in every twenty-seven customers at the close of 2021) is anticipated to continue, creating a need for more operational visibility as to the real-time status of the distribution system.

In addition to the foregoing, the Company has also considered the origins and nature of its electric distribution system. In this regard, the Company is informed by the facts that JCP&L's electric system predominates in radial circuits, which traditionally are, or have been, the most common design used by electric companies. This is found especially in those areas with rural and dispersed customer settings. The fact that JCP&L's electric system can be characterized as predominantly a radial distribution system is not surprising given the rural and mixed character and extent of its service territory, recognizing that today's JCP&L is an amalgamation of some 75 to 75 to 100 small electric companies in New Jersey with roots extending back as early as the mid-1800s. Radial circuits, historically and currently, are the least expensive to plan, construct and maintain but, historically, they are also vulnerable to faults that cause service failures to customers without alternative feeders to serve them. In contrast, looped distribution system circuits can permit the electric company to supply customers from two or more sources, depending on the complexity of the available infrastructure. These looped types of circuits are more complicated and expensive to plan, design and maintain, but do offer increased operational flexibility and reliability advantages over radial circuits. The installation of strategic sectionalizing devices and circuit tie points by JCP&L has created some additional operational flexibility that increases reliability, but it does not rise to the level of changing the essential nature of these circuits as radial. Indeed, over the years, the Company has been implementing manual and automatic distribution circuit tie schemes, where those opportunities exist. As discussed in the 2022 ASPR,

As of the end of 2022, JCP&L has a total of 114 automatic distribution circuit tie schemes in place, with 81 of these tie schemes also having SCADA control. Plans for installing SCADA control on the remaining 33 circuit tie schemes that do not yet have SCADA control are in progress, with a number requiring and awaiting commissioning (or re-commissioning). Such circuit tie schemes automatically transfer customers to an adjacent circuit in the event of a circuit lockout, which helps to reduce the number of customers affected from a sustained outage. Each automatic circuit tie scheme typically involves two different circuits.

2022 ASPR at p. 45.5

Collectively, these conclusions, trends and forecasts create a basis upon which to propose additional accelerated investments in the JCP&L distribution system. However, before beginning to discuss details regarding its proposals in EnergizeNJ, it is important to also address some additional issues that pose further support for the Company's decision to propose a second IIP at this time.

Recent Regulatory Changes Create an Immediate Performance Gap for JCP&L

The Company's review and analysis of the recent changes in the Board's reliability regulations effective as of February 2023 has led it to anticipate that reliability performance and reliability performance levels by which it is measured will likely result in a worsening of the Company's reported reliability performance (as compared to 2022 standards), creating an immediate performance gap. First, as a practical matter, with the change to the definition of a Major Event, the number of historically excludable major events will be reduced in the Company's going-forward reliability reporting. Second, the change in the calculation of each electric distribution company's ("EDC") benchmark and minimum reliability levels will now occur annually based on the most recent five-year period, which will likely also be reflected as part of the performance gap. Implementation of the accelerated measures within this Program additionally offers (i) a comprehensive approach to closing this anticipated performance gap (based on historical system performance), and (ii) a detailed review of opportunities for outage avoidance and reduced outage duration.

Analysis and Quantification of the Performance Gap

The Company quantified the expected performance gap resulting from current reliability trends and the impacts of the changes in regulations. As a baseline, the Company reviewed its "All-In" reliability performance and assumed no sustained outage data was excludable. From there, the Company analyzed which major events would meet the revised regulations based on one of the following assumptions:

- 1. Within a 48-hour period, 10% of customers in either operating region have experienced a sustained outage;
- 2. State of Emergency events ended upon the restoration of all customers affected by an initiating event; or

⁵ However, it should be noted that the load transfers accommodated by these tie schemes may be limited by the available capacity of each circuit where they are installed.

3. Mutual Aid events will be considered where the aid provided drives higher than minimum CAIDI performance for an operating region.⁶

Figure 6 below illustrates the results of this analysis, with the blue data being the historically reported SAIFI performance for each region, and the gray data being the estimate of the added contribution to SAIFI performance based on the assumptions outlined above.

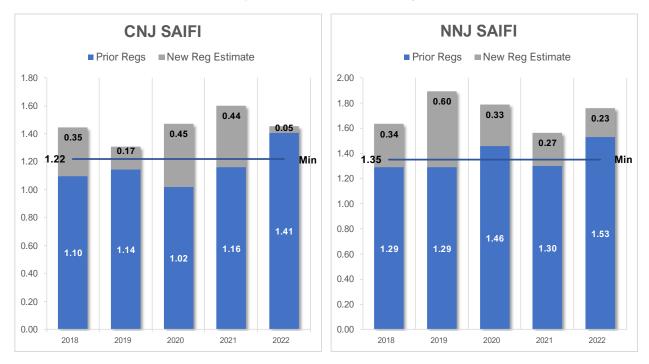


Figure 6: Estimated Performance Gap

The result of this analysis is shown in the table below, which provides the anticipated performance gap for each operating region. Based on this analysis, the 5-year average gap as compared to the 2022 Minimum SAIFI for each region is estimated in the table below.

Performance Gap										
CNJ NNJ										
0.23	0.38									

⁶ The third assumption is a straightforward and data driven approach for historical event review and analysis. However, this assumption does not represent the Company's interpretation of item 4 of the Major Event definition (N.J.A.C. 14:5-1.2).

This drives an overall JCP&L expected performance gap (compared to 2022 standards) of 0.29 SAIFI, equating to about 330,000 additional customer interruptions being added annually to JCP&L's performance measures. Figure 7 below illustrates the future impact of this performance gap when considering the expected increase in measured reliability performance and how that will affect the five-year rolling average reassessment of benchmark and minimum reliability performance levels.

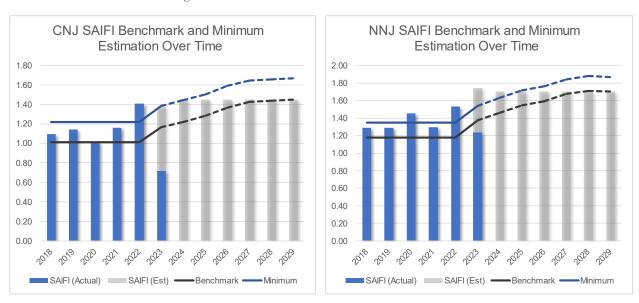


Figure 7: Future Year Benchmark and Minimum Estimations

In Figure 7, the blue data shows actual performance levels, and the gray data shows estimated Year End performance based on the performance gap analysis described above. In Figure 7, it is evident that the future five-year average, or annual benchmark reliability level, will continue to rise year over year until it levels out after the five-year period ending in 2027. For the purposes of this analysis and calculation of the minimum performance level, the standard deviation of the future five-year average is assumed to be the same as the standard deviation of the 2018 – 2022 period. Future year benchmark and minimum performance levels are shown as dotted lines to demonstrate these as an estimate.

In summary, it should be recognized that based on this average anticipated performance gap and the annual recalculation of reliability performance levels, at the end of the five-year period following the above-described regulatory changes, the BPU should expect that, without mitigation, JCP&L's benchmark performance levels may rise by the estimated five-year gap amounts listed above plus 1.5 times the historical standard deviation used to calculate the 2022 minimum reliability levels.

Reliability and Distribution Circuit of the Future Vision

FirstEnergy's Distribution Circuit of the Future vision was briefly mentioned earlier in this Report. JCP&L intends that this Program will serve as a foundational step in the process of implementing that vision. However, following on the foregoing Reliability Overview, it is important to explain that FirstEnergy's Distribution Circuit of the Future vision provides the lens through which the Company views the current state of its reliability performance, the current developments that will affect it, and the future trends and developments that can be anticipated to challenge it. Indeed, the narrow and wide-angle features of that lens permit the Company to see not only the details of the necessary foundational elements, but also the possibilities for managing its distribution system over the long-term to better meet and anticipate customer expectations within the BPU's regulatory framework. The vision flows from a concept developed by FirstEnergy in partnership with the Electric Power Research Institute ("EPRI"). EPRI is an independent, non-profit energy research and development organization that is committed to ensure the public has clean, safe, reliable, affordable, and equitable access to electricity. The means by which EPRI set out to accomplish these goals was to collaborate and network with industry peers, identify, and solve critical and emerging issues, all while ensuring their research and guidance brings benefit to the public. Because the distribution landscape was changing at an accelerated pace to accommodate and integrate DER, EVs, and growing customer expectations, starting in 2018, EPRI held multiple workshops with many utilities, including FirstEnergy, to outline the "Grid Modernization Playbook: A Framework for Developing Your Plan".

⁷ Grid Modernization Playbook: A Framework for Developing Your Plan. EPRI, Palo Alto, CA: 2019. 3002015238. §3.

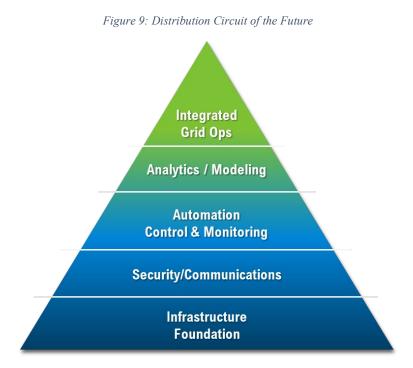
Figure 8: Foundational Areas of Grid Modernization

Planning

Models, methods, and tools to support asset and resource planning functions to ensure safe, reliable, and efficient modern system.

Operations

Monitoring, controls, automation technologies, and tools to optimize and ensure safe, secure, and reliable operation of the modern system.


Supporting Technologies

Data capture, management, communications, and devices that support the planning and operation of the modern system.

Physical infrastructure

Transformers, poles, wires, and other physical apparatus.

The foundational areas of the Grid Modernization playbook or "building block" outlined in Figure 8 above depict the relationships between core utility concepts and components of the distribution system. This "building block" is the key to drive a relationship between the various components of the distributions system as the means by which to modernize the grid. Utilizing the "building block" philosophy, in a collaborative exercise, FirstEnergy and EPRI created the "Distribution Circuit of the Future." As seen in Figure 9 below, there are six layers to the circuit of the future model that build upon each other to achieve the pinnacle – the long-term reality of a fully integrated advanced distribution system.

The concept provides a vision of the future that includes the integration of physical distribution circuit assets, communications systems, cyber security systems and data analytics that is enabled by technologies to enhance capacity, extend opportunities for electrification and DER integration, as well as providing increased resiliency and hardening.

The vision represents a milepost to be driven toward over the long-term and nurtured and enabled by periodic incremental investments that support legacy distribution system replacements and upgrades. The vision is built upon a solid infrastructure foundation that encapsulates customer needs and a level of futureproofing. This includes continuing improvements of layered security and communications which support operating a system that is protected against vulnerabilities with an overall improved and integrated set of communication tools. This will enable further automation controls and/or monitoring advancements with improvements to real-time data and operational decision-making, which in turn allows for advanced analytics and modeling. These concepts support an integrated grid that provides options to address outage avoidance, automation, outage reduction, and dynamic load support.

As conceived, the Distribution Circuit of the Future vision provides a sound engineering roadmap, which allows for operational and investment decision-making, planning, and coordination that is informed by, and consistent with, achieving the goal of integrated grid operations through consistent analysis and actions. Thus, infrastructure foundational decisions must, to the degree practical, foreshadow to the future either by (i) combining with simultaneous decisions related to security, communications or automation control and monitoring that allows for advanced analytics

and modeling, or (ii) setting the stage for accommodating and enabling later decisions to actualize the higher-level building blocks providing such capabilities.

Before exploring each of the building blocks in detail, it is important to call out the two key objectives behind this Distribution Circuit of the Future model:

- 1. Improve the reliability and resiliency of distribution circuits through the application of cost-effective asset replacement/upgrade strategies. The model will support improvements in capacity and operational flexibility and lay the foundation for a distribution modernization platform that can enable future smart grid applications.
- 2. Support the design of distribution circuits that incorporate strong three-phase backbones that can accommodate and enable greater circuit tie capability and, therefore, provide for greater operating flexibility, such as and including automatic circuit ties. This will improve opportunities for the Company to reduce the duration of customer outages while working to make repairs to the distribution system.

The "Infrastructure Foundation" building block refers to distribution design and construction to transform current electric distribution infrastructure to accommodate the integrated grid operations future. The Distribution Circuit of the Future must accommodate the technological trends and the challenges of an evolving sophistication in customer needs. Among other things, in this regard, engineering designs must continue and increase the pace of transition from radial to other configurations, including the loop design and from passive/reactive management to active management that is facilitated and enabled by real-time line-of-sight of the distribution system all the way to the customer level. The "Security/Communications" building block refers to the engineering design and construction of security and communications systems that create and strengthen a security strategy that safeguards the critical distribution system while enabling indepth active management of the distribution system to accommodate operational and security needs. The "Automation Control and Monitoring" block refers to the engineering design and construction, which takes advantage of the opportunities presented by the evolving progress in implementing over time the foregoing building blocks. The "Advanced Analytics and Modeling" building block, likewise, refers to the engineering design and construction that turns the increasing levels of detailed data (from the other building blocks) into holistic planning and actionable realtime assessment and response. The pinnacle building block, "Integrated Grid Ops," refers to a centralized monitoring system that is turned over to a distribution automation application through a network of sensors and devices. This ultimately provides distribution control center ("DCC") operator indication and control of the distribution automation system and field devices.

The Distribution Circuit of the Future vision was used as a guide for the projects proposed for implementation in the Program. As such, the EnergizeNJ proposal set forth in this Report and the Petition it supports represents the initiation of a long-term approach for using incremental investment opportunities to drive improvement and technological advancement across legacy

distribution systems. Importantly, the Company is not building a distribution system from scratch; but rather, it is accommodating the challenges presented by an existing distribution system with a history of origin and development over many decades. Therefore, this Report recognizes that it is imperative for JCP&L to take a 'layered' approach that confronts what currently exists with component designs that address each aspect of the Distribution Circuit of the Future model within the proposed Program, while also addressing the reliability performance gap (compared to 2022 standards) associated with new regulatory requirements, over the course of the Program's five-year period.

VII. EnergizeNJ Cost Benefit Analysis

Cost Estimating

As a precursor to the discussion of Program benefits, it is important to illustrate the cost estimating approach utilized by the Company in developing the project component costs. The engineering cost estimates have been developed in alignment with standard Company practices for budgeting purposes. Throughout scoping of the work proposed within this Program, comparable actual historical project component costs served as a basis for the costs that were then unitized for future project component estimates. Project components focused on outside plant also applied unitized estimates based on the Company estimating application, CREWS, which is a software system that generates cost estimates based on specific designs. Such cost estimates also include ancillary project costs, such as traffic control and permitting. Likewise, for substation-related cost estimates, historical costs, which include indirect charges such as substation engineering and design costs, were referenced and reviewed. In all cases, project component estimates reflect the prevailing contractor and labor rates and material costs.

Each project component description within this Report, will further outline the annual planned investment by year. Additionally, Attachment 2 to this Report will list the distinct locations where each component project will take place, accompanied by the engineering cost estimate and the proposed in-service time frame.

Benefit Analysis

With a basic understanding of the cost estimating process deployed for EnergizeNJ, it is appropriate to discuss how anticipated benefits that the Company expects the Program will deliver are calculated. In that regard, while this Report analyzes the components of the proposed projects, there will be some components that, on a standalone basis, have a benefit-cost analysis ("BCA") of less than 1.0. However, the total package of components making up each project results in an overall BCA greater than 1.0. Recognizing the layered nature of the Distribution Circuit of the Future model, it should be expected that certain project components provide greater benefits than others, but it must be recognized that all components are necessary to support and achieve the stated long-term integration objectives. This was explained in some detail in, and consistent with the thrust of the aforementioned Distribution Circuit of the Future vision and roadmap. EnergizeNJ is designed to provide meaningful benefits to customers, both qualitative and quantitative. Many

of the qualitative benefits will be discussed more specifically within each project and component project description outlined below.

To quantify the benefits to customers associated with Program projects, the Company used the Interruption Cost Estimate ("ICE") tool, ⁸ sponsored by the U.S. Department of Energy ("DOE"). This tool was developed by Lawrence Berkeley National Laboratory and Nexant, based on extensive research. The ICE tool is used to estimate the dollar benefits associated with avoided outages and reductions in restoration time. The results of the ICE tool analysis for EnergizeNJ are shown in Figure 10 below, and will be discussed in further detail later herein, reflecting anticipated dollar benefits from improvements in general reliability and in the Company's ability to restore power following a major storm event:

Figure 10: Benefit to Cost Ratio

		N	lom	inal (\$ in millions	s)						
Benefits Storm		Benefits on-Storm		Total		Costs	Benefit/Cost Ratio				
\$ \$ 685 \$ 2,677 \$ 3,361 \$ 931 3.6											
Note that the DOE ICE tool limits storm benefits to 24 hours											

	No	min	al (\$ in millio	ns)	NPV (\$ in millions)								
Benefits Costs				Benefit/Cost Ratio		Benefits		Costs	Benefit/Cost Ratio				
\$ 3,361 \$ 931 3.6						937	\$	756	1.2				
	Note that the DOE ICE tool limits storm benefits to 24 hours												

			N	ominal	(\$ in million	is)				
Benefits Benefits Total Costs Benefit/										
\$	573	\$	2,508	\$	3,082	\$	935	3.3		
		Note the	at the DOE I	CE tool	limits storm	benefit	s to 24 hours			

	No	minal	(\$ in millio	ns)	NPV (\$ in millions)							
Benefits			Costs	Benefit/Cost Ratio		Benefits		Costs	Benefit/Cost Ratio			
\$	3,082	\$	935	3.3	\$	846	\$	763	1.1			
		^	lote that the	DOE ICE tool lin	nits	storm benefit:	s to	24 hours				

⁸ Estimating Power System Interruption Costs: A Guidebook for Electric Utilities. EPRI, Palo Alto, CA: 2022. DE-AC02-05CH11231. §13.

For consistency, the Company performed its benefit-cost analysis using the ICE tool in a similar fashion as was performed for the Reliability Plus investment program. First, the Company analyzed the historical outage information for circuits addressed in EnergizeNJ projects for the period 2018 through 2022 to develop bases for measurement of reliability improvement in terms of SAIFI and SAIDI. The five-year reliability data was considered in three data sets:

- 1. Non-Storm: This data set contains all historically considered blue sky and minor weather outages and was adjusted conservatively to include an estimate of those historical outages that would no longer meet the timeframe limitation of the revised Major Event definition criteria as described in the first assumption within the Reliability Performance Analysis section of this Report (page 12). This data set was the driver for component project definition criteria and location selection since this would be comparable to the measurable performance under the new regulations moving forward.
- 2. <u>Storm</u>: This data set was then the remainder of the analysis performed above; this was the set of historical outages which would continue to meet the limiting timeframe of the 10% Major Event definition criteria. Storm benefits are considered to be separate from "Non-Storm" benefits of the work to be performed.
- 3. Severe Weather Events: This data set contains events which generally are unavoidable and less frequent, and, therefore, are not typically calculated as outage events that can be offset. For purposes of the five-year period used for this Program, nor'easters Riley and Quinn, as well as Tropical Storm Isaias have been included in this category. However, the benefits associated with the offsetting of outage impact and duration of these types of severe weather events were only considered for one project component (*i.e.*, Replacement of Coastal Switchgear) within this Program proposal, the reasons for which are discussed in that component project section of this Report.

These bases for the benefit calculation assure that JPC&L's focus (including to offset the earlier discussed comparative reliability performance gap) takes account of all relevant and related data, rather than simply utilizing historical categories of events, which would be inconsistent with the new regulations on a forward-looking basis.

Next, the Company used the approach set forth in a 2008 report published by EPRI entitled "Quantifying Distribution Reliability Benefits" as a framework for the Company's estimation of reliability improvements upon installation of distribution system equipment included in EnergizeNJ. Specifically, the EPRI methodology was used to estimate reductions in Customer

⁹ Quantifying Distribution Reliability Benefits. EPRI, Palo Alto, CA: 2008. 1015855. §3-1 & 3-2.

Minutes of Interruption ("CMI") (*i.e.*, the total outage minutes that customers experience) and Customers Interrupted ("CI") (*i.e.*, the total number of customers that experience an outage). This framework was built upon with more specific engineering evaluations for each project component, which are defined within the BCA file (Electronic Attachment 4 to this Report¹⁰). These results were used to develop post-EnergizeNJ plan SAIDI estimates and post-EnergizeNJ plan SAIFI estimates in both non-storm and storm periods. The SAIDI and SAIFI bases, and SAIDI and SAIFI post-plan estimates for non-storm and major storm periods discussed above, are inputs to the ICE tool, which uses these inputs to quantify the dollar benefits to customers from proposed distribution system enhancements. The Net Present Value of the customer benefit driven by SAIDI and SAIFI post-plan improvements sum to a total of \$937847 million.

The ICE tool also uses inputs that are specific to the Company, such as the number of customers and average annual energy usage by customer class, as well as certain state specific inputs determined by the DOE, such as number of commercial and industrial customers in certain industries, median household income, and time of day outage information, to quantify dollar benefits.

Further discussion will be incorporated into each project overview and component project discussion within this Report to explore the benefit analysis performed as well as the qualitative benefits within this proposed Program.

VIII. The EnergizeNJ Program

This Program is a portfolio of three main projects: Grid Modernization, System Resiliency, and Substation Modernization. Figure 11 below summarizes the projected JCP&L EnergizeNJ costs per project per year and in total.

¹⁰ Attachment 4 to this report is provided in CD format only and is considered Confidential. This electronic attachment is an Excel (.xlsx) file made up of forty-five data and analysis tabs. The first tab of this file ("Assumptions") outlines the benefit assumptions for each component project within this Program. Three tabs within the file ("Benefits", "Budget" and "FilingTable") are dedicated to the Program budget and summarizing the benefits calculated from the DOE ICE tool and the overall Program Benefit to Cost Ratio. Two tabs within this file ("JCPL Ckts" and "2018-2022 Outages") provide the circuit and outage history used as a baseline for this Program's benefit calculations. The remaining tabs provide detailed analysis for each component project, including location selections, pre- and post-plan reliability information, and DOE ICE tool results.

Projects 2026 2027 \$ 19.17 **Grid Modernization** \$ 59.26 \$ 36.77 \$ 13.28 \$ 106.04 \$ 36.77 \$ 271.28 System Resiliency 65.30 \$ 137.22 \$ 107.09 \$ 112.91 \$ 72.44 \$ 64.32 \$ 559.28 7.90 \$ 19.82 \$ 17.40 \$ 24.33 \$ 18.81 \$ 11.73 \$ 99.98 Substation Modernization **Projects** \$193.81 | \$137.77 | \$243.28 \$128.02 2024 2025 2026 2027 2028 2029 **Projects Total Grid Modernization** \$ 91.96 \$ 62.29 \$ 24.16 \$ 128.35 \$ 37.03 \$ 21.81 \$ 365.60 Cystem Resiliency 54.02 102.00 100.05 62.70 Substation Modernization 17.40 \$ 24.33 \$ 11.73 \$ 99.98 \$ 7.90 \$ 19.82 \$ 18.81 \$ \$ 153.88 \$ 184.91 \$ 138.70 \$ 253.63 \$ 118.61 \$ 85.03 934.76

Figure 11: JCP&L EnergizeNJ Project Plan (in millions)

The three main Program projects provide near-term customer benefits, build on the investments made in JCP&L's Reliability Plus program, and continue to prepare the Company's distribution system for the future of technology and electrification by integrating advanced equipment with control and monitoring capability. Consistent with the Distribution Circuit of the Future vision outlined above, EnergizeNJ represents a layered approach for accelerating the distribution system modernization and preparing for the future of the distribution grid. The rest of the discussion in this section provides a description of the three projects (and their supporting components), the project benefits, the selection of project components and a summary of each project's cost over the five-year term of the Program period. Importantly, the schedules included in Attachment 2 to this Engineering Report detail the distinct locations for each component project in EnergizeNJ.

Project 1: Grid Modernization¹¹

The Grid Modernization project addresses core capability and functionality of the distribution circuits. Core capability and functionality refers to support structures, circuit capacity and

¹¹ The Company recognizes that the term "grid modernization" has been, and is, used in different contexts to mean different things. For instance, in the BPU Order dated November 9, 2022, in BPU Docket No. 0021010085, the BPU accepted the report entitled *Grid Modernization Study: New Jersey Board of Public Utilities report* that was prepared by Guidehouse, Inc. The Order also directed BPU Staff to develop the necessary revisions to the interconnection rules at N.J.A.C. 14:8-5.1 *et seq.* to immediately incorporate certain of the recommendations contained in the report. In addition, the Order directed Staff to conduct an expedited process to move forward on implementing the remainder of the report's recommendations. In that report, "grid modernization" is referred to in the context of a strategy that:

^{...}underpins connecting the (Energy Master Plan's ("EMP's")] target for 7,500 megawatts (MW) of offshore wind, 17,000 MW of solar energy and 2,500 MW of energy storage by 2035, while paving the way for higher DER adoption levels to achieve the long range deeper decarbonized energy systems envisioned in the 2019 update to the Global Warming Response Act (GWRA). The NJ economy will benefit from increased local jobs, private sector investments, accelerated clean

switching/sectionalizing. To maximize the benefits of technology integration when constructing the Distribution Circuit of the Future, it is first necessary to consider and address these foundational elements. The components of this Program that are focused on infrastructure investment will do so to enable additional capacity for circuit ties, accommodate greater DER penetration and support electrification, while also driving reliability benefits associated with outage avoidance, or CI reduction, and storm hardening.

In addition to the foundational elements of JCP&L's distribution system, the Grid Modernization project will also incorporate the Distribution Circuit of the Future aspects of Communications, Control & Monitoring, as well as Analytics and Modeling in the areas where Grid Modernization component projects are identified to take place. This approach drives a cost-effective solution to modernizing the JCP&L distribution system by holistically addressing both short- and potential long-term service requirements and customer expectations. In the short-term, the components of the Grid Modernization project will provide solutions to address reliability performance with a focus on outage avoidance and, therefore, will improve JCP&L's SAIFI performance. In the long-term, the Grid Modernization project components will proactively offset potential future capacity constraints and communication gaps with field devices.

This Grid Modernization project includes components to provide accelerated distribution line work to enable realization of the Distribution Circuit of the Future vision that will offer storm hardening benefits as well as additional capacity for electrification, DER integration, and operational flexibility (*i.e.*, increased circuit tie capability) during sustained outages.

This project also contains a component that accelerates the Company's investments in its underground infrastructure with an Underground Cable Replacement component project. With a focus on storm hardening and outage avoidance, this project also includes a Selective Undergrounding component, which will relocate vulnerable overhead line sections underground.

resource adoption and improved resilience. A modernized grid is part of a broader solution set that can enable other incentives and accelerators that support the state's ongoing work to realize a clean energy future. It is generally accepted that in order to meet EMP goals, NJ will need to adapt current processes and strategically modernize the electric grid.

See p. 1 of the report. In particular, Guidehouse Inc. was retained to assist BPU staff in the grid modernization effort related to how New Jersey could increase renewable resource interconnection for DER. While the Company's usage of the term "grid modernization" in this Program does not conflict with the manner in which the term is used in the Guidehouse report or in the BPU's Order accepting same, the Company's Program "grid modernization" is both more broadly (*i.e.*, not merely pertaining to interconnection of DER resources) and more narrowly (*i.e.*, honed in on the JCP&L distribution system) focused.

Indeed, the five components of this project aim to accelerate infrastructure investments to build JCP&L's Distribution Circuit of the Future.

In this regard, the Grid Modernization project components are intended to provide a layer of additional circuit protection and sectionalization. This integration of additional protective devices will reduce the number of customers affected during a sustained outage, and in some cases where a temporary fault is present, reduce what was a sustained outage to a momentary interruption for customers downstream of newly installed devices.

Per the benefit analysis described in Section VIIVI, this project has an overall Benefit to Cost Ratio of 1.0.

		Non	nina	al (\$ in mill	ions)	NPV (\$ in millions)						
Customer Benefit Project	Ве	Benefits		Costs	Benefit/Cost Ratio		Benefits	Costs		Benefit/Cost Ratio		
Grid Modernization	\$	1,115	\$	366	3.1	\$	301	\$	303	1.0		
		Non	nina	al (\$ in mill	lions)	NPV (\$ in millions)						
Customar Banafit Brainst	D.	fit-		Cooto	Benefit/Cost	Benefit/Cost			Cooto	Benefit/Cost		
Customer Benefit i roject	-	попи	00313		Ratio	Delicitio			00313	Ratio		
Grid Modernization	\$	1,115	\$ 366		3.1	\$	301	\$	303	1.0		

In the following sections, each Grid Modernization ("GM") Component will be discussed in more detail.

GM Component: Lateral Fuse Replacement with TripSaver II
This project component will replace lateral fuses with S&C¹² TripSaver II cutout-mounted reclosers building on the Reliability Plus experience where the Company installed 777 of these devices in 2019 – 2020. A lateral is a radial line tapped from the three-phase portion of a circuit. In the event of a temporary fault, a traditional fuse operates causing an extended outage until the outage is investigated by a troubleshooter, repairs are made, and the fuse is replaced. These temporary faults are referred to as transient faults. The term transient fault suggests that such a fault is self-correcting and typically only lasts a short duration. While that may be the case for the fault that initiated the interruption, once the protective fuse operates, there is no immediate opportunity for the customers interrupted to be restored after the fault is cleared. An example of such a fault would be an object in brief contact with a distribution line.

The S&C TripSaver II is a single-phase automatic reclosing device that fits in the existing fuse holders. Unlike a fuse, which is destroyed when it operates, the TripSaver II opens the circuit when

¹² Referring to the S&C Electric Company, which produces the TripSaver II device, among other things.

a fault occurs and, in the case of a transient fault, is able to reclose the circuit and restore service once the transient fault has cleared. The TripSaver II reclosers automate service restoration such that when transient faults clear, customers will experience a momentary outage, with service restored in less than ninety seconds. The TripSaver II prevents transient faults (as would occur if a limb or animal impacted a lateral) from becoming sustained outages. Figure 12 and Figure 13 below illustrate the TripSaver II in isolation and as installed on the distribution system.

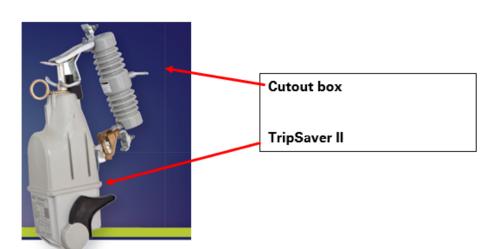
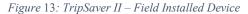



Figure 12: TripSaver II Installation Diagram

JCP&L selected fuse locations for installation of TripSaver II by first identifying the zones of protection (*i.e.*, the area on the circuit between the fuse and the next protective device where damage would cause the fuse to operate) for fuses sized 25 amperes ("amps") up to 140 amps. Locations for this project have been identified based on five-year fused lateral performance for

fuses which have operated at least one time in the defined period. The Company has identified an additional 2,069175 TripSaver II device installations across 1,094148 distinct locations and 487500 circuits. The Company eliminated from consideration fuses, which protect 34.5kV, 4.8kV, and underground distribution systems due to operating practices and because these configurations may limit the benefit of the TripSaver devices.

This project represents a cost-effective means to bring reclosing technology to customers served from laterals and has a proven historical benefit based on JCP&L's Reliability Plus and ongoing base capital investments. In reviewing the TripSavers installed during the Reliability Plus program, an 80% average benefit has been identified for outage causes that are temporary in nature. This means that for such identified outages, it is expected that 80% will no longer have a sustained outage impact and result.

Planned investment by calendar year for this Lateral Fuse Replacement with Tripsaver II GM component project is shown in terms of millions of dollars in the table below:

Project Component	2	2024		2025		2026		2027		2028		2029	Total	
Lateral Fuse Replacement with TripSaver	\$	2.47	\$	6.01	\$	1.67	\$	3.98	\$	2.16	\$	1.30	\$	17.59
Project Component		2024		2025	2	026	2	027	20	028	20	29	То	tal
Lateral Fuse Replacement with TripSaver	- \$	2.62	\$	6.12	\$	1.70	\$	4.19	\$	2.41	\$ 1	.45	\$ 18	3.49

GM Component: Distribution Circuit of the Future

The Distribution Circuit of the Future model represents a step-function change for the JCP&L distribution system, and this proposed Program makes significant progress to this end; however, not every element of the Distribution Circuit of the Future vision is, or can be, addressed in EnergizeNJ. For the selected circuits, EnergizeNJ focuses on bringing forward the elements of the Distribution Circuit of the Future model that most significantly benefit reliability, so as to address the identified SAIFI performance gap. Figure 14 below is a condensed pictorial version of the Distribution Circuit of the Future, which highlights the core infrastructure foundational components that will be discussed below in more detail. An expanded version of this illustration is included as Attachment 3 to this Report.

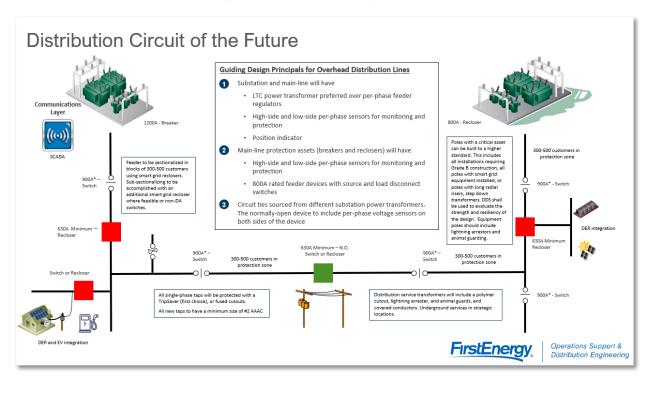


Figure 14: Distribution Circuit of the Future

The typical annual process for addressing high priority circuits ("HPC") from year-to-year is to investigate and seek to remedy specifically identified problem areas based on that years' performance. However, year over year, whether or not in successive years, some circuits continue to repeat as poor performers. Another common issue with a largely radial distribution system is that it typically has limited tie opportunities/capabilities and increased outage exposure due to the length and capacity of such circuits. On an annual basis, specific problem line segments will be addressed. However, HPC does not address circuits as a whole in a manner that can strengthen the core infrastructure and available tie capability.

This project component will undertake a significant investment to systematically upgrade identified sections of conductors, which are defined within this component summary. JCP&L currently utilizes 397.5 All Aluminum ConductorAmps Alternating Current ("AAC") since this conductor's ampacity has met system loading needs for most three-phase mainlines. This project component will use updated design guidance to accommodate circuit load up to or over 800 amps, as required, on the mainlines. When this conductor is installed on Class 4 poles, it creates structural loading challenges for the poles as well as the older crossarms. Upgrading mainline poles as required (based on pole loading design calculations), along with upgraded structural guying, will reduce pole failures during all weather conditions. With these component project efforts, the Company plans to upgrade poles and crossarms, upgrade conductors, remove step transformers, install animal guards, and upgrade hardware and other equipment, all where needed.

The lower capacity conductor that was installed historically, as the distribution system expanded, consisted mainly of #2 ACSR as well as various size copper conductors, some of which remain in service. These conductors are generally rated between 200 and 400 amps and do not have the tensile strength of larger conductors. These generally smaller conductors are more prone to damage and failure during major storms and other weather events. Many of the locations where these smaller conductors are still in service are in 4kV areas and some have been spliced on multiple occasions. Upgrading these areas will eliminate low voltage conditions, improve resiliency, and increase capacity for DER hosting and electrification.

Moreover, the Company anticipates the benefit of increased circuit capacity for circuit ties and DER hosting capacity to result from this/these component project(s) with the consistent installation of a minimum of conductor with an 800-amp capacity as the three-phase main line conductor. When these projects are complete, the selected distribution circuits will have increased capacity for circuit ties to restore customers on nearby circuits during sustained outages, thus enabling improved resiliency and the reliability associated with greater switching and restoration flexibility. The distribution circuits will also be constructed to better withstand the weather conditions associated with coastal wind, snow and ice storms.

In alignment with the Distribution Circuit of the Future model, Supervisory Control and Data Acquisition ("SCADA") integrated recloser installations will be installed on circuits where work is occurring if those circuits currently lack the 300-500 customer premium operating district ("POD") protection. POD protection is a FirstEnergy term used to define a segment of the distribution system between SCADA controlled switches/reclosers that is used by the Distribution Automation process, to control the flow of power and connections within the system and reduce the number of customers per outage when able. Where identified, the SCADA operated recloser installation will limit the customer impact of sustained outages by about 50% due to the addition of PODs. These devices will offer the DCC operator visibility and control to more quickly identify the area affected by an outage, offer a more rapid response and consequently a reduction in switching time for restoration upon the completion of repairs.

Other work associated with these Distribution Circuit of the Future component projects will include installing animal guards on designated equipment and ensuring lightning arrestors are installed to meet Company standards on the overhead lines. These types of component projects, when proposed and undertaken individually and separately, may not provide significant quantitative benefits to the overall system. However, when undertaken and constructed in a collective and comprehensive manner, are expected to markedly reduce many outage incidents for the customers resulting from weather events, including even major events.

In the Company's review of the selected five-year period of outage data, the Company selected circuits that would have met the annual HPC criteria (after realigning the historical reliability performance with the adjusted Major Event definition regulations). Generally, circuits were selected if they would have met such criteria more than one time over the five-year period; however, over twenty exceptions were made for single occurrences based on recency and relative

SAIDI contributions. Specific segments of the circuits selected to undergo this work scope are based on analysis of the historical reliability performance, conductor size and circuit capacity. Sectionalization selections were based on a population of the HPCs, which do not currently have a POD configuration.

In total, <u>157</u>175 circuits (as identified in the above selection discussion) will be addressed through this project component over the five-year period. Across these <u>157</u>175 circuits, <u>411</u>627 line-miles are planned to be upgraded, and <u>152</u>170 SCADA reclosers will be installed.

This project provides a benefit to the overall design and operation of JCP&L's distribution system by improving reliability and resiliency, increasing operating flexibility and preparing the distribution system for increased DER penetration and the challenges from increased electrification going forward. Also, by applying the core infrastructure foundations of the Distribution Circuit of the Future model to these and future upgrades to JCP&L's distribution system, a 45% improvement is estimated in certain outage causes, including but not limited to line and equipment failures, lightning and wind. This reduction in overall outage numbers is derived from engineering estimates based on results of similar programs across EDCs within FirstEnergy's footprint. This assumption has been applied to estimate reliability benefits for the specific line segments where work is planned and also has been prorated based on the percentage of feeders where work is planned to occur. This is to say, if 10% of a single circuit has been selected for this work, it is estimated to yield 10% of the projected 45% reliability improvement for the purposes of the BCA.

Planned investment by calendar year for the Distribution Circuit of the Future Grid Modernization component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Circuit of the Future	\$ 51.92	\$ 18.58	\$ 6.75	\$ 94.05	\$ 29.92	\$ 13.34	\$ 214.57
Project Component	2024	2025	2026	2027	2028	2029	Total
Circuit of the Future	\$84.48	3 \$44.00	\$17.60	\$116.15	\$29.92	\$15.84	\$307.99

GM Component: Circuit Protection and Sectionalization

This component project will install reclosers on the mainline of select 4800-volt ("V") Delta distribution circuits. These reclosers will separate the circuits into PODs, reducing the customer impact for faults on the mainline.

A standard distribution circuit includes a three-phase mainline that originates from the substation with laterals that can be one to three phases which originate from the mainline. The mainline is protected by a circuit breaker or recloser in the substation that uses overcurrent protection schemes. These lateral branches will usually be protected by the coordination of an expulsion fuse or TripSaver, resulting in only a momentary interruption to the mainline. The substation circuit

breaker or recloser operates in coordination with the downstream fuses and other protective devices (i.e., line recloser) to clear faults on the mainline.

In many cases across the Company's 4800V Delta system, fuses are used on the mainline, which is illustrated in Figure 15 below. As has already been discussed, when an expulsion fuse operates as the result of a transient fault, there is no ability to restore service to customers downstream of the fuse until it is replaced by a troubleshooter. However, in some cases, instead of fuse installations on the mainline, there are 300-amp capacity switches, which require manual operation. Should a fault occur downstream of these devices, the interrupting operation occurs at the substation, creating an outage which impacts the whole circuit rather than a designated POD.

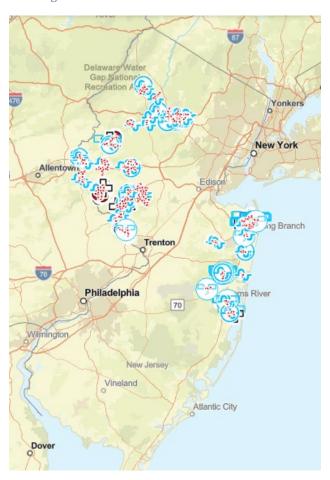


Figure 15: JCP&L 4kV Delta 200K Fuse Locations

This project component focuses on JCP&L's delta systems because these are phase-to-phase connected systems with no ground reference, and as such, require phase-to-phase and 3-phase faults under normal circumstances to operate a protective device. This means that on a three-phase distribution system, when a fault occurs, there is potential for back feed from the non-faulted phases. While JCP&L distribution work practices ensure safety is the number one priority before

any work occurs on these delta systems, three-phase interrupting devices are an engineered solution to this potential safety exposure. Figure 16 below serves to demonstrate the difference between a delta (phase-to-phase connected) versus wye (phase-to-neutral connected) system.

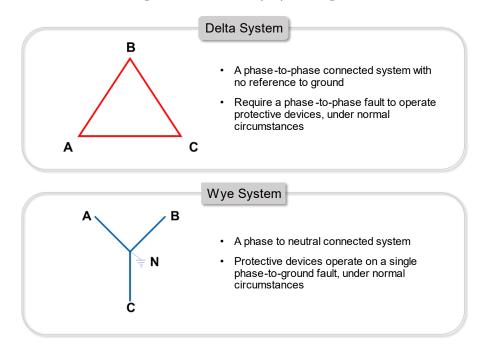


Figure 16: Delta versus Wye System Diagram

With the installation of mainline reclosers as proposed here, a fault on the mainline that is downstream of a recloser, rather than a fuse, will be quickly isolated from the portion of the circuit between the substation and the recloser. If such a fault is transient and clears on its own, the recloser will restore the customers through the protection cycle of the device (estimated within ninety seconds or less). As discussed above, these reclosers will be installed as three-phase interrupting devices to eliminate back feed potential on the delta system if a fault is introduced.

Consistent with the Distribution Circuit of the Future discussion earlier, the Company will also install SCADA communications to these line reclosers. SCADA communications can be used to remotely open and close reclosers to connect and disconnect certain portions of the distribution circuit as real-time operating conditions warrant. Advanced reclosers, along with SCADA control, enable monitoring of the recloser status as well as system conditions (voltage, current, etc.) in order to more easily identify and respond to customer outages at the circuit level. This approach enables control center operators to be more efficient in responding to faults by sectionalizing distribution circuits to reduce outages to customers upstream of the fault. It also allows real-time decision-making regarding the use of system infrastructure to enable more rapid customer restoration.

This project targets 4800V delta Circuits for the replacement of 200K-type mainline fuse or 300 Amp capacity switches (solid blade) installations. Because this component project is set to replace mainline fuses on 4800V delta systems, the outage data used to identify candidates was limited to mainline fuse outages only. For this component, thirty-three circuits have been selected to install a total of thirty-nine SCADA reclosers in place of mainline fuses or switches, with one such example shown in Figure 17 below. These are circuits where installation of a recloser would create a POD based on the Distribution Circuit of the Future roadmap.

Figure 17: Proposed Recloser Location Woodland 54069 Circuit

This component project aligns with and supports the transition to the Distribution Circuit of the Future vision by providing additional automation and communication on the 4800V Delta circuits. Where reclosers are to be installed on 4800V Delta circuits, the recloser installations planned within this project component will be compatible with JCP&L's primary distribution voltage of 12.47kV and will not require modification or replacement when the operating voltage of these circuits is standardized to 12.47kV.

Planned investment by calendar year for this Circuit Protection and Sectionalization Grid Modernization component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Circuit Protection and Sectionalization	\$ 0.60	\$ 1.11	\$ 0.60	\$ 0.34	\$ 0.43	\$ 0.26	\$ 3.32

GM Component: Underground Cable Replacement

This component project will accelerate the replacement of primary underground cable. Investment in underground cable is designed to enhance the reliability of service to underground residential developments. When customers experience outages resulting from underground faults, the repairs are typically long in duration because they involve locating the fault, excavating to uncover the cable and replacement or repair of the cable or equipment located underground. In addition, performing this replacement work on a planned, accelerated basis versus an emergency basis will avoid long unplanned outages and be less inconvenient for customers.

One of the main causes of underground cable failure typically starts with water ingress into the cable, which, in turn, causes damage to the cable insulation, resulting in the formation of electrical trees ¹³ from the inside of a cable growing outward. In other cases, damaged or missing concentric neutral leads to a concentration of electrical fields at the points of damage, which can result in electrical trees starting from the outside of the cable growing inward. Underground cable failures often result in prolonged outages since these cables are directly buried in the earth, it takes longer to locate and isolate the faults and then make the necessary repairs. The replacement of bare concentric neutral ("BCN") cable in the JCP&L distribution system with jacketed cable will improve reliability by reducing the frequency of underground cable faults.

JCP&L will replace selected portions of underground cable with jacketed cable in conduit. The jacketed cable to be installed in EnergizeNJ will be less susceptible to neutral deterioration and is expected to therefore reduce the frequency of underground cable faults. Installation of cable in conduit, rather than directly buried, also saves time in the repair process if a failure were to occur. In this case, the failed cable can be removed from the conduit and a new replacement cable pulled in its place. Also, fault indicators will be installed at every transformer location within the work scope to enable a troubleshooter to more easily locate an underground fault, which will accelerate the restoration of service following an outage.

This component project also addresses certain large residential developments with underground infrastructure. Underground residential development sections were selected for the project based on consideration of the number of potential customers affected, or the number of customers served. Within this component project, nine circuits will be addressed with the replacement of approximately forty-six underground line miles of cable. JCP&L also will replace selected portions of pre-1986 construction underground cable that contains a non-jacketed BCN with new jacketed cable in conduit. In addition to providing reliability benefits, this component project reduces the

¹³ Electrical trees are one of the main degradation mechanisms in solid polymeric insulation leading to the failure of high voltage equipment. The growth of electrical trees can lead to irreversible insulation failure. *3D Characterization of Electrical Tree Structures* IEEE Transactions on Dielectrics and Electrical Insulation Vol. 26, No. 1; February 2019, which can be accessed at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8624220.

potential for stray voltage conditions for customers as the BCN cable deteriorates over time. Based on analysis of historical outage data, the benefits of similar projects have shown an estimated 60% improvement for outages caused by direct buried/underground residential development ("URD") classified interruptions.

Planned investment by calendar year for this Underground ("UG") Cable Replacement Grid Modernization component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
UG Cable Replacement	\$ 3.40	\$10.20	\$ 3.40	\$ 6.80	\$ 3.40	\$ 3.40	\$ 30.61

GM Component: Selective Undergrounding

This component project will target overhead line sections to be placed underground to reduce distribution line and equipment exposure of such sections to most fault causes. The JCP&L distribution system, as with the electric utility industry in general, is predominantly an overhead system. With all overhead systems, overhead line construction (which is less expensive by orders of magnitude compared to undergrounding) has a higher level of exposure to most fault causes, especially in forested areas, where tree strikes pose a hazard to the distribution system. This project will benefit customers both during non-storm conditions as well as during storm events. This component project will address fourteen circuit segments and will relocate a total of seven miles of overhead distribution line underground. Locations selected for this project are double-circuited substation egresses or double circuit, three-phase overhead line sections.

Undergrounding these double circuits directly outside of, and in the immediate vicinity of, the substation will limit exposure to potential hazards and limit substation breaker operations affecting large number of customers. By focusing the selective undergrounding component projects on distribution overhead line sections that serve more than 18,000 customers, JCP&L will maximize benefits from these projects by reducing potential customer interruptions in most outage categories, particularly vehicle, tree and line/equipment related interruptions.

Benefit analysis for this component project is consistent with JCP&L's Undergrounding Study, previously filed with the BPU in response to recommendation TSI-EDC-7, in BPU Docket No. EO20090607, Order dated June 9, 2021, as summarized in Figure 18 below.

Undergrounding Outage Reduction Factors by Cause Reduction Cause Reduction Cause Animal 95% Other Utility-Non Elec 0% Bird 100% Overload 0% Call Error 0% Planned Outage 0% Contamination 95% Previous Lightning 95% Customer Equipment 0% Switching Error 0% 90% Trees - Sec/Service Equipment Failure 100% Fire 95% Trees Off ROW-Limb 100% Forced Outage 95% Trees Off ROW-Tree 100% Human Error - Company 0% Trees On ROW 100% Human Error -Non-Company 0% UG Dig-Up 0% Ice 100% Unknown 95% 95% Vandalism 0% Lightning Line Failure 90% Vehicle 95% Object Contact With Line 100% Wind 100% Other Electric Utility 0%

Figure 18: Undergrounding Outage Reduction Factors from TSI-EDC-7

Planned investment by calendar year in this Selective Undergrounding Grid Modernization component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Selective Undergrounding	\$ 0.87	\$ 0.87	\$ 0.87	\$ 0.87	\$ 0.87	\$ 0.87	\$ 5.20

Project 2: System Resiliency

The System Resiliency ("SR") project is designed to create a more resilient distribution system and reduce the length of customer outages. This SR project will increase operational flexibility for JCP&L by increasing communications (*i.e.*, SCADA) with line devices/equipment on the distribution system, increasing capacity for circuit ties and redundancy, and further building-out elements of the Distribution Circuit of the Future vision. This project also enables distribution automation capabilities and advances standardization of distribution system voltages across the JCP&L distribution system on an accelerated basis. The four proposed components in the SR project will upgrade portions of the distribution system to provide benefits to customers in both non-storm and storm conditions.

Specifically, the component projects of Voltage Standardization, New Distribution Sources, and Circuit Ties with SCADA (Loop Schemes) all have identified certain line segments, much like the Circuit of the Future component project, for capacity upgrades. Identified locations within this scope of work will benefit from additional circuit tie opportunities. Most notably, the Voltage Standardization component proposes to overcome the historical differences in operating voltages

resulting from the acquisition and combination of several electric systems that now form JCP&L, as previously described in Section VIV of this report. Voltage standardization is critical in the Circuit of the Future vision to enable compatibility and flexibility across the JCP&L system. Within the New Distribution Sources component project, existing circuits will be split by either adding an additional, new exit for a single circuit or a new distribution transformer and a new circuit exit at an existing substation.

As an ancillary benefit, the locations selected for work under the SR Project will add capacity for DER interconnection in areas where solar accommodation opportunities may be limited, and to support electrification. An example of this is illustrated in Figure 19 below.

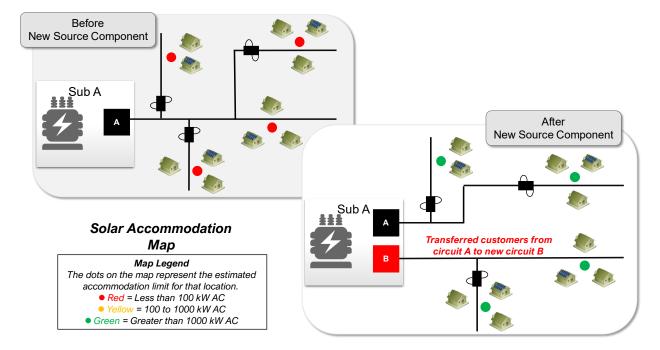


Figure 19: Illustration of Added Capacity via System Resiliency Projects

The two component projects within this SR project that further advance distribution automation by providing additional monitoring and greater visibility are Circuit Ties with SCADA (Loop Schemes) and Distribution Automation Enablement. The Distribution Automation Enablement component project is designed to provide remote real-time monitoring and control of key system devices (*i.e.*, reclosers, substation breakers and transformers), which will allow the Company's operations personnel to respond more rapidly to outages, reduce the duration and number of customers affected by an outage, and enhance the safety of workers. The projects within this category align with the ADMS capability of the Company's recently installed and implemented Network Management System ("NMS") (which, among other enhancements, replaced the Company's legacy outage management system known as "PowerOn") and are designed to enable

greater automation of customer restoration without (or with reduced levels of) distribution system operator ("DSO") or fieldworker intervention in the future. These devices will be enabled with intelligent control over the distribution system and will enable more rapid fault location, isolation, and service restoration. ("FLISR"). In addition, cyber security is critical to the Company's distribution system and protection against cyber security risks will be integrated into this component project and other projects (as well as others within this Program proposal).

These technologies will provide the Company with increased flexibility and the potential for more integrated operations as well as greater grid visibility in support of increased circuits ties, DER and electrification. The customer benefit in this SR project is aimed at reducing the duration of customer service interruptions.

Per the benefit analysis described in Section VIIVI, this project has an overall Benefit to Cost Ratio of 1.42.

		Nominal (\$ in millions)					NPV (\$ in millions)						
Customer Benefit Project	Be	nefits		Costs Benefit/Cost Ratio			Benefits		Costs	Benefit/Cost Ratio			
System Resiliency	\$	\$ 2,254		559	4.0	\$	\$ 620	\$	455	1.4			

		Nom	ina	l (\$ in mil	lions)	NPV (\$ in millions)						
staman Banafit Businet	D.	Donofito Co		Conto	Benefit/Cost	Donofito		Conto	Benefit/Cost			
stomer benefit i roject	ь	пень		00313	Ratio		Delients		00313	Ratio		
System Resiliency	\$	1,668	\$	469	3.6	\$	454	\$	381	1.2		

In the following sections, each SR component project will be discussed in more detail.

SR Component: Distribution Voltage Standardization

Over 70% of JCP&L's distribution customers are served from 12.47kV circuits. The remaining distribution circuits have operating voltages of 4.16kV, 4.8kV or 19.9kV. This SR component project upgrades selected areas of the JCP&L distribution system currently operating at non-standard voltages such as 4.16kV wye or 4.8kV delta to operate at JCP&L's standard voltage of 12.47kV. Upgrades also include larger conductors to increase tie capability and additional sectionalizing devices installed to reduce outage size in the event of a fault. Other benefits from this project component include reduction in required inventory from voltage standardization, reduced line losses from larger conductor and increased capability to support greater DER penetration and electrification under the State's clean energy goals.

These 4kV distribution systems, constructed most often with lower ampacity copper conductor, were common at the time of the initial build-out of the distribution system until the early 1960s. The increased load associated with large scale development in the late 1950s, 1960s and early 1970s required higher operating voltages to meet the demand imposed upon such systems. As a result, a new standard operating voltage of 12.47kV was selected for all new distribution construction.

Although much of the distribution system operates at 12.47kV, areas of 4.16kV and 4.8kV delta remain. These 4kV distribution systems are not sufficient in the long-term to support DER expansion and electrification to achieve the State's clean energy goals and, it is neither practical nor prudent to make significant investment to increase capacity in these 4kV distribution systems without first converting them to the standard operating voltage. Simply put, without standardization of system voltages, there will always be a gap in system capacity, resiliency, and operational flexibility between the standard voltage circuits and the non-standard voltage circuits.

As part of the SR project in this Program, the Company will upgrade these 4kV, non-standard voltage circuits to allow for operation at 12.47kV. This will create new opportunities for circuit ties with adjacent circuits resulting in more rapid service restoration. Specifics within this work scope include the same distribution line construction standards that were identified in the Distribution Circuit of the Future component, which again is expected to yield a reduction in sustained customer interruptions. Additionally, this SR project component will include the upgrade of substation equipment such as power transformers and circuit breakers, based on a holistic review of the existing circuit, including both substation and line equipment, to ensure capability to transfer load during abnormal conditions.

The candidates for this component project are 4kV distribution voltage circuits and substations, that, when upgraded to 12.47kV, would present tie opportunities to adjacent circuits and substation sources. Within this component there are eighteen projects incorporating this 4kV distribution voltage standardization and copper conductor replacement that are surrounded by 12.47kV distribution voltage circuits. Figure 20 below serves as a visual example of one location selected for the Voltage Standardization component project work. By converting the Sea Bright 4kV, there will be more tie opportunities on the Barrier Island with neighboring 12kV circuits for customer restoration during sustained outages.

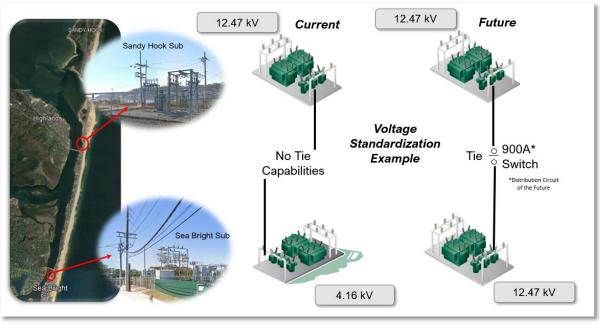


Figure 20: Voltage Standardization at Sea Bright Substation

This SR component project yields tie opportunities that should prevent a sustained outage caused by a loss of supply or substation related incidents about 75% of the time. When a substation interrupting device operates, due to the added circuit tie, up to 50% of customers affected should be restored and further isolated from the outage. The Company estimates a benefit from upgrades to current distribution standards to offer an 80% reduction of specific outage causes. Note that the estimates of reliability improvements were prorated according to the percentage of the circuits where work is performed.

This SR component project is another step in the progression toward the Distribution Circuit of the Future vision across JCP&L because a standard operating voltage improves system resiliency; that is, the ability to recover and restore customers, in the event of an outage.

Planned investment by calendar year for this Distribution Voltage Standardization System Resiliency component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Distribution Voltage Standardization	\$33.55	\$67.53	\$67.53	\$ 67.53	\$33.98	\$33.98	\$304.09

SR Component: New Distribution Sources

This SR component project provides for installation and/or construction of new distribution substation equipment or sources to add capacity to support load growth, greater DER integration and electrification and to reduce circuit length in specific areas of the JCP&L system. This component project also addresses areas where back-up capacity presently is not available and remote circuits with capacity constraints. Component projects include the creation of new circuits

or additional modular substation sources, including new distribution transformers. Customers served from longer circuits have greater exposure to outages. Reducing the length of the circuits, adding new sources and adding circuit ties would lessen this exposure. This SR component project: (i) addresses high impact areas of the JCP&L distribution system where there is limited opportunity or alternative to serve the load in the event of a single failure, and (ii) serves to reduce the risk of longer duration outages.

New sources will address areas where portions of the system are constrained by limited opportunities for circuit ties and load transfers. Adding new sources, creating new circuits and transferring customers from existing sources/circuits to these new sources/circuits will reduce outage exposure and improve reliability for these customers. Based on the location selection criteria outlined below, each selected component project location will include the work scope for the addition of a new circuit and additional work scopes may include the addition of a modular substation (including distribution transformer installation) and the addition of circuit ties to further reduce the duration of potential outages. Each selected location also includes evaluation of the overhead circuit based on the same criteria as the Distribution Circuit of the Future Grid Modernization component project; thereby including conductor upgrades that will support tie capability between distribution circuits, greater DER integration and electrification.

Figure 21: Typical Modular Substation

Specific locations were determined through planning and analysis, the use of historical reliability metrics and considering the availability of a spare circuit exit within an existing substation and/or availability of space for expansion within an existing substation perimeter. However, additional consideration was given to projects which would require the expansion of existing substations and/or the purchase of real estate for new modular substations. ThirteenFive distinct locations have been identified for these SR component projects, which incorporate 131141 line-miles of construction upgrades.

For this SR component project, estimates were made of the customer outage reductions resulting from the introduction of new sources, reduced circuit length and circuit ties, as applicable. As this component project aligns with, and incorporates, elements of the Distribution Circuit of the Future, the benefits identified under the Circuit of the Future component are also applicable here; specifically, a 45% improvement is estimated in certain outage causes, including but not limited to, line and equipment failures, lightning and wind. This reduction in overall outage numbers is derived from engineering estimates based on results of similar programs across EDCs within FirstEnergy's footprint. This assumption has been applied to estimate reliability benefits for the specific line segments where work is planned and as indicated earlier, has been prorated based on the percentage of feeders where work will occur. Further, for locations where new circuit ties are added, it is estimated that a portion of customers interrupted will be able to be restored more quickly at most times (*i.e.*, 75% of the time) because of the availability of a new circuit tie to the new circuit.

Distribution Planned investment by calendar year for the New Distribution Sources SR component project is shown in terms of millions of dollars in the table below:

Project Component	2024		2025		2026		2027		2028		2029		Гotal	
New Distribution Sources	\$ 6.96	\$	40.16	\$	23.86	\$	25.88	\$	23.58	\$	19.78	\$	140.22	
Project Component	2024		2025		2026		2027		2028		2029		Total	
New Distribution Sources	\$ 6.96	3	\$13.91		\$13.91	(\$13.91	\$	13.91	\$	6.96	\$	69.57	

SR Component: Automatic Circuit Ties with SCADA (Loop Schemes)

This SR component project focuses on upgrading identified line protective devices to improve visibility, control and, in some cases, add reclosing capability for SCADA enabled distribution reclosers. This component project builds on the predecessor Reliability Plus to expand distribution system resiliency and will continue to position the JCP&L distribution system for additional future grid modernization and automation consistent with the Distribution Circuit of the Future roadmap. With this SR component project, the Company will continue to construct recloser circuit ties with SCADA control for real-time system monitoring and remote-control switching capability to adjacent circuits with different substation sources.

As stated in the Section V_{L.5} Reliability Overview, the JCP&L footprint has installed 114 distribution 'loop' tie schemes, which represents approximately 10% of the Company's distribution circuits. Since the filing of the 2022 ASPR, two of those schemes have been disabled due to permanent load transfers, and fifteen additional tie schemes have had SCADA control added, bringing the totals to 112 automatic distribution tie schemes in place with ninety-six also having SCADA control as of the date of this Report. In some instances where circuit ties are already available on the JCP&L distribution system, customers could further benefit from reduced outage and shorter duration outages by improving operator visibility and control of field devices.

Additionally, limited circuit capacity due to smaller conductor, limits the amount of load that may be transferred using a circuit tie and limits opportunities to restore customers during an outage.

Under this SR project component, the proposed circuit ties will be created with the installation of a mid-point SCADA recloser on each circuit along with a normally open tie SCADA recloser.

The SCADA control that will be installed at the circuit recloser locations will have the ability to open and close reclosers to connect and disconnect certain portions of the distribution system as real-time operating conditions warrant. Additional work such as line upgrades will increase the load transfer capabilities of these circuits. To accommodate the associated increase in load, some portions of the impacted circuits will need to be upgraded to 800-amp conductor. This SR component project will continue to position the JCP&L distribution system for additional future grid modernization and automation consistent with the Distribution Circuit of the Future vision.

These new circuit ties, as depicted in Figure 22 below, will be designed to allow for the remote transfer of customers experiencing an outage to an adjacent circuit to quickly restore service.

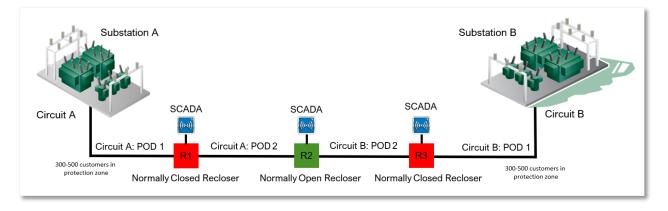


Figure 22: Loop Scheme Recloser Diagram

Candidate circuits under this SR project component were selected from circuits based on the HPC criteria and those that have a tie point to an adjacent circuit. Additionally, engineers identified circuits where compatible reclosers were previously installed, which increases the cost-effectiveness on these circuits of upgrading from a stand-alone recloser installation to a full loop scheme. Seventy-one Fifty-nine automatic circuit ties with SCADA will be added with this SR component project proposal. Additionally, as part of the scope of this work, and in order to realize the full benefits as explored above, approximately one hundred and nineninety two overhead linemiles have been identified for capacity upgrades. Twenty-seven of these installations are also proposed for the Distribution Automation ("DA") Enablement project component, which will yield additional resiliency benefits.

This SR component project will provide service restoration benefits to customers experiencing distribution outages, as well as some substation and sub-transmission system caused outages.

With the addition of PODs on the identified circuits, the extent of the sustained customer impact is expected to be reduced by 50% with a concomitant reduction in outage duration. Customers will also experience benefits from the new construction of identified line sections by applying the core infrastructure foundations of the Distribution Circuit of the Future model to these and future upgrades to JCP&L's distribution system. More specifically, a 45% improvement is estimated in certain outage causes, including but not limited to line and equipment failures, lightning and wind. This reduction in overall outage numbers is derived from engineering estimates based on results of similar programs across EDCs within FirstEnergy's footprint. This assumption has been applied to estimate reliability benefits for the specific line segments where work is planned and has been prorated based on the percentage of feeders where work is occurring.

Planned investment by calendar year for this Automatic Circuit Ties with SCADA (Loop Schemes) SR component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Automatic Circuit Ties (Loop Schemes)	\$ 16.70	\$ 19.02	\$ 10.85	\$ 16.27	\$ 10.85	\$ 9.76	\$ 83.44
Project Component	2024	2025	2026	2027	2028	2029	Total
Automatic Circuit Ties (Loop Schemes)	\$ 5.42	\$ 10.85	\$ 10.85	\$ 16.27	\$ 10.85	\$ 9.76	\$ 63.99

SR Component: Distribution Automation Enablement ("DA Enablement")

This SR component program proposes a data upgrade for the substation busses that are connected to mostany loop scheme locations ¹⁴ as outlined in the Automatic Circuit Ties with SCADA (Loop Scheme) SR component project discussed above. These upgrades will be in the form of SCADA and telemetering enhancements that provide DCC operator visibility that was not previously available. Each circuit will have operational control as well as volt/var visibility. Additionally, substation load tap changer ("LTC") and transformer readings and control will provide useful information such as voltage step, loading and temperature values. Finally, DA Enablement will allow the current distribution infrastructure to accept emerging technologies consistent with the Distribution Circuit of the Future roadmap.

To reach a state of real-time decision-making, JCP&L's DCC operators require indicators and control for most of the distribution network. However, there are distribution system locations

¹⁴ The DA Enablement component project proposes a data upgrade for the substation busses that are connected to any fifty-nine loop scheme locations which were identified in the initial EnergizeNJ filing. In the amended EnergizeNJ filing, 12 additional loop scheme component project locations were added; however, corresponding DA Enablement projects were not considered as part of the HPC Phase II Plan.

where such indicators and control are not available. Additionally, there is very little and limited information available in an automated form regarding volt/var flow as well as substation equipment status such as voltage step and transformer loading.

The Automatic Circuit Ties with SCADA (Loop Scheme) SR component projects discussed earlier provide an opportunity to access, assess and, where advantageous, address each circuit and substation equipment electrically associated with the loop scheme installation as a candidate for the proposed DA Enablement enhancement or upgrade, which would make available indicators and controls to DCC Operators on each feeder to provide breaker current per phase, voltage per phase, and Var flow. Also, with these DA enablement upgrade/enhancements, the substation transformer would provide data from the LTC on a real-time basis as well as enable remote control. This will allow the DCC operators visibility upon which to act appropriately to avoid possible voltage problems for customers. Each substation would also be a candidate for a new Remote Terminal Unit ("RTU") as outlined in the RTU Replacement component of the Substation Modernization Project discussed below.

The visibility, control and system integration outlined in this solution will be accomplished by the installation of a Schweitzer Engineering Laboratories ("SEL") device as required on associated line and substation devices. JCP&L will install the latest model of SEL protective relays which meet Company standards on communication and security for integration within the existing secure SCADA network and NMS. Replacing electromechanical with SEL relays within the substation (transformer and circuit communication) will result in advanced communication and visibility on this equipment to the DCC operator. The level of visibility provided with this technology at the transformer level includes real and reactive power, voltage, LTC position, megavolt amperes and amps per phase. Similarly, at the substation circuit device level, real and reactive power as well as amps per phase will be measured and communicated through the system. Figure 23 serves as a visual of the level of detailed telemetry available to the DCC Operator and the distribution planning engineers before (left) and after (right) the execution of this proposed work scope in concert with the execution of the RTU Replacement component projects.

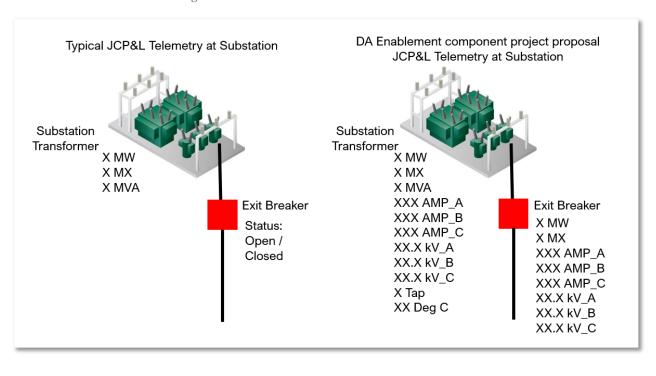


Figure 23: Distribution Automation Enablement Overview

The selection criteria for this SR component project are <u>similar to</u> the <u>criteriasame as</u> used for the Automatic Circuit Ties with SCADA (Loop Scheme) SR component project discussed above. This approach is to prepare these <u>selected</u> circuits to become fully automated. This work will immediately offer to significantly reduce the duration of customers outages. Again, this approach is also consistent with the underlying principles of the Distribution Circuit of the Future vision discussed earlier herein. Based on the selection criteria there will be twenty-nine substations where this component project will take place.

In JCP&L's reliability benefit analysis, distribution outages considered for offset opportunities were those that had a duration extending beyond 120 minutes. In these cases, it is estimated that there was opportunity for the DCC operator to analyze the system with real time data and make better-informed switching and restoration decisions. For these cases, it is assumed that outages will be shortened by twenty minutes as a result of the DCC operator having full control of the switching devices, which is preferred to rerouting field resources.

The main qualitative benefit of this work arises from its contribution to the overall drive toward the pinnacle building block (Integrated Grid Operations) of the Distribution Circuit of the Future pyramid displayed earlier in this Report. While full integrated grid operations may not be an immediate result of this SR component project, as discussed, immediate benefits will be observed, and this SR component will continue to set the stage for future vision-consistent technology applications for the JCP&L distribution system.

Planned investment by calendar year for this DA Enablement SR component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Distribution Automation Enablement	\$ 8.09	\$10.51	\$ 4.85	\$ 3.23	\$ 4.04	\$ 0.81	\$ 31.53

Project 3: Substation Modernization ("SM")

The Substation Modernization project is comprised of five component projects, which will provide accelerated modernization to many of the Company's electric distribution substations and substation equipment that takes advantage of other projects occurring within the ambit of this Program. The SM Project is also consistent with the principles of the Distribution Circuit of the Future vision. While the Distribution Circuit of the Future vision implies a heavy focus on the overhead distribution system, the substation sources and equipment serving these Circuits of the Future are also key enabling components for this vision to be realized as a whole. Overhead lines host most of the outage exposure on the distribution system, simply based on the total number of line miles across the Company's footprint. However, it is critical to also focus on substation infrastructure as part of this reliability focused investment program, because a single substation outage generally poses a higher risk from a customer impact perspective.

Within the SM project, three component projects are focused on substation equipment from an infrastructure perspective and two, in particular, are focused on interrupting devices - —the Replacement of Coastal Substation Switchgear, and the Oil Circuit Breaker Replacement component projects. These SM component projects are focused on improving the safety and reliability of the primary interrupting and reclosing devices at the selected substations, such that all selected locations will align with the 800-1200A minimum capacity range modeled in the Distribution Circuit of the Future. The Mobile Substation SM component project also has an infrastructure focus, since the purchase of newer and more operationally flexible mobile substations will support, not only customer restoration, but also system upgrades within this Program and within the Company's base capital investment plans.

The Distribution Circuit of the Future vision also requires reliable and secure communication systems. In order to have sufficient, state-of-the-art communications capability in place and compatible with advancing technologies, upgraded equipment is also required at the substation. This is the case especially for two key types of equipment: (i) protective relays with advanced metering and monitoring capabilities, and (ii) RTUs, which are the primary communication devices at the substation.

Referring to Figure 9 (page 17 of this Report), component projects within the Substation Modernization project, which enable the second through fourth building blocks of the Distribution Circuit of the Future (*i.e.*, Security/Communication; Automation, Control and Monitoring; Analytics/Modeling), also include the RTU Replacement and the Modernize Protective Equipment project components. Advanced monitoring of substation equipment will provide support for better

planning and modeling data for use by the Company's engineering team to enable more informed analysis and evaluation of available capacity for DER interconnections.

The SM component projects outlined here focus on: i) advancing the technology and equipment within JCP&L's distribution substations with the benefit of providing greater visibility and control for the Distribution System Operator; ii) upgrading equipment to better withstand coastal environmental factors; and iii) accelerating installation of protective equipment required for the continued increase in DER penetration and electrification within the JCP&L territory.

Per the benefit analysis described in Section VIIVI, this project has an overall Benefit to Cost Ratio of 1.1.

		Non	nina	l (\$ in mill	lions)		NF	۷(\$ in millio	ns)
Customer Benefit Project	Bei	nefits		Costs	Benefit/Cost Ratio	В	enefits		Costs	Benefit/Cost Ratio
Substation Modernization	\$	298	\$	100	3.0	\$	91	\$	80	1.1

In the following sections, each SM component project will be discussed in more detail.

SM Component: Replace Coastal Substation Switchgear

JCP&L has a large population of Distribution Metal Clad Switchgear ("switchgear") located throughout the service territory. The simple and concise form factor to which this switchgear is designed, proved useful to construct substation infrastructure within limited spaces or real estate. These enclosures house an insulated bus in the bus duct and switchgear breaker cubicles usually consisting of several rackable air or vacuum circuit breakers. ("ACBs" or "VCBs"). The enclosures also serve as protection against the elements as well as to improve aesthetics. This SM component project proposes to prioritize the upgrade of eight distribution switchgear units for twenty distribution circuits, mostly found in coastal areas and upgrade them with new switchgear units, including the underground cable from the point of origin within the substation circuit cubicles to the point of connection with the overhead distribution system. Switchgear locations were selected based on historical corrective maintenance records where the orders specifically recorded moisture damage or water intrusion.

These switchgear units have been maintained over time to prevent damage from environmental factors as well as normal wear and tear; however, recently there has been an uptick in the required corrective maintenance due to enclosure degradation. Despite efforts to maintain and extend the useful life of this equipment, the proximity to the coastal environment of moist, salt air accelerates the degradation of the switchgear and associated metallic structures. The bus duct assemblies that connect the low voltage side of distribution transformers to the switchgear are also deteriorating at an accelerated rate. The intrusion of water into the bus duct and cubicles can lead to flashovers within the enclosure. These faults can cause permanent damage or may even destroy breakers, current transformers. ("CTs"), control devices, and conductors. Further, any fault that occurs

within the bus duct or switchgear exposes the transformer to a high fault current that can shorten transformer life or even lead to subsequent transformer failure.

Over the past few years, these switchgear units have failed at a higher rate and the Company's review of historical corrective maintenance data has resulted in engineering estimates that predict one piece of switchgear equipment will fail approximately every five years. Figure 24 depicts a piece of switchgear equipment identified for replacement through this SM component project.

Figure 24: Ocean Beach Substation Switchgear

Upgrading the switchgear units as proposed in this SM component project will reduce outages for over 23,000 customers and will prevent possible prolonged outages due to switchgear failure. The time required to restore service to customers from switchgear failure or flashover is anticipated to be greater than three hours and may require the use of a mobile substation to restore all customers. An additional safety benefit of this SM component project is the inclusion of state-of-the-art safety mechanisms incorporated in the upgraded switchgear, which are designed to prevent arcing and increase employee safety when racking these devices into or out of position. An example of the results of such an arcing event is shown in Figure 25 below. This safety benefit serves as another engineering control to reduce employee exposure to potential hazards while completing their work.

Figure 25: Monmouth Substation arcing event

The benefit analysis for this SM component project is demonstrated in outage avoidance under both non-storm and storm operations. As such, historical data used in this analysis included a review of all outage data, specifically including the two recent severe weather events, Riley and Quinn and Tropical Storm Isaias. Unlike with other SM component projects, these severe events were included in the reliability benefit analysis because one of the main drivers for failure is water intrusion; the amount of rainfall is a major factor in these events.

These switchgear upgrade SM component projects will follow the Distribution Circuit of the Future model regarding minimum capacity of 800 - 1200A for substation interrupting devices. The work will also incorporate DA Enablement criteria for protective relaying upgrades where required for greater visibility and control to a DCC Operator, which is also consistent with the Distribution Circuit of the Future vision.

Planned investment by calendar year for this Replace Coastal Substation Switchgear SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Replacement of Coastal Switchgear	\$ -	\$ 2.37	\$ 4.75	\$ 4.75	\$ 4.75	\$ 2.37	\$ 19.00

SM Component: Oil Circuit Breaker (OCB) Replacements

The Company currently has over eighty distribution oil circuit breakers ("OCBs") in service throughout the service territory. This SM component project targets forty-seven OCBs for upgrades, with prioritization given to OCBs on circuits with higher customer counts. Selected circuit breakers will be upgraded from oil—insulated to vacuum or magnetically actuating circuit breakers, or distribution style reclosers as substation protective devices. These breaker upgrades will include the upgrade of the associated disconnect switches or the installation of disconnect switches where none are currently installed.

JCP&L has utilized OCBs for over five decades, and while the majority of in-service circuit breakers are not OCBs, the OCBs are less capable breakers than state-of-the-art breakers available today. Based on historical incidents and corrective maintenance history, engineering estimates predict that all in-service OCBs will fail within the next thirty years. Breaker failures result in extended customer outages of 140 minutes or more, and potentially impacting all customers served from the circuit associated with the failed breaker. Over the useful life of these OCBs, there has been an increase in distribution system load and, correspondingly, an increase in the amount of available fault current, which increases the potential for the breaker to fail when it operates. These OCBs are more difficult to maintain due to the limited supply of spare parts and could potentially pose significant environmental and safety risks associated in the event of a leak or failure of the breaker. OCBs by their nature tend to fail more catastrophically than is the case for other breaker types. Such catastrophic failures pose environmental risk and safety risk to employees working on or around the breaker.

This SM component project will result in a more reliable distribution breaker system as an upgrade to modern equipment will provide enhanced performance. Newer breaker technology eliminates the environmental impacts from leak and failures associated with OCBs and state-of-the-art equipment and technology upgrades made programmatically will avoid more expensive emergency service breaker repairs and replacements.

This SM component project provides benefits in the form of outage avoidance. These upgrades will avoid sustained outages of approximately 140 minutes to potentially 60,000 customers. All breaker upgrades will follow the DA enablement criteria affording less time to clear faults (*i.e.*, quicker restoration) as well as improved data and visibility to the DCC operators when an outage occurs, which is consistent with the Distribution Circuit of the Future vision.

Planned investment by calendar year for this OCB Replacements SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Substation Equipment Replacement	\$ -	\$ 3.39	\$ 2.82	\$ 2.82	\$ 2.82	\$ 1.41	\$ 13.26

SM Component: Modernize Protective Equipment

This component project will modernize substation protective equipment ABB¹⁵ Distribution Protection Unit ("DPU") relays, and Electromechanical Underfrequency Load Shedding ("UFLS") relays type MDF and SFF¹⁶. There are currently fifty-three ABB DPU relays in service, which are first-generation microprocessor-based relays and have limited event reporting and analytic capabilities. Further, operational issues have been reported throughout the utility industry respecting the DPU model relays. These issues have manifested during testing or have been observed during local display failures. For DPU relays, engineering estimates predict that one unit per year will likely fail, resulting in outages of 120 minutes or more to approximately 98,000 customers on circuits protected by a DPU relays. These first-generation microprocessor-based relays have limited event reporting and analysis capabilities.

Similarly, engineering estimates predict that approximately all fifty-six UFLS relays will fail within the next thirty years. UFLS failures are likely to result in customer outages of 240 minutes or more to approximately 227,000 customers on circuits protected by a UFLS relays. Electromechanical UFLS relays are no longer supported by the manufacturers, similar to the DPUs, have no event reporting and analytic capabilities. There are currently thirty-one MDF and twenty-five SFF under-frequency relays in service that are also candidates for upgrades.

Upgrading all the remaining ABB DPU/UFLS relays with state-of-the-art SEL relays will avoid potential outages related to DPU/UFLS relays, should they malfunction or fail. Both the DPU and UFLS relay upgrades will follow the DA Enablement criteria, which is consistent with the Distribution Circuit of the Future vision. Therefore, these upgrades will allow for more advanced telemetry communication with the NMS and will serve as a first step in enabling future integration with advanced grid operations. As with the DA Enablement component project, this improved functionality will provide to the DCC operator greater ability to perform fault analysis and greater visibility of distribution system conditions to limit and or reduce customer outages and outage duration.

¹⁵ Referring to the ABB Ltd., which is a manufacturing company of electric transmission and distribution equipment, including protective relays.

¹⁶ MDF and SFF are two types of frequency-based relays. These relays are intended to sense hazardous underfrequency (or overfrequency) conditions and initiate selective load shedding to preserve system stability.

Planned investment by calendar year for this Modernize Protective Equipment SM component project is shown in terms of millions of dollars in the table below:

Project Component	2	024	2	2025	2	026	2	2027	2	028	2	029	Total	
Modernize Protective Equipment	\$	3.30	\$	4.85	\$	2.33	\$	4.65	\$	4.65	\$	1.36	\$	21.14

SM Component: Remote Terminal Unit (RTU) Replacements

In this SM component project, JCP&L has identified key substations for RTU replacement. These older style communication terminals have too many limitations to allow for the increased amount of real-time data needed for proper decision making by a DCC operator consistent with the principles inherent in the Distribution Circuit of the Future vision.

With the improvements available from state-of-the-art distribution system technology, there is an opportunity to place much more real-time information at the fingertips of the DCC operators. Further, with the deployment of ADMS, the data requirements of these systems outstrip the capabilities of the existing field-deployed RTUs. Reliance on wired communications (*i.e.*, telephone lines) and the use of arcane communication protocols (*i.e.*, RS-232) make it necessary to modernize communications with field devices to accommodate the data requirements for real-time distribution management systems, such as ADMS and other component projects such as those included in the DA Enablement component project.

Under this SM component project, seventy-six substations have been identified for enhanced reliability through real-time monitoring. This work will improve visibility of system conditions for DCC operators as described in the DA Enablement component project. Similar to the Grid Modernization and System Resiliency projects discussed above and their respective component projects, this SM component project can be considered as an upgrade and expansion of data communications capability from the substation to the NMS.

Upgrading the communications and communication interfaces will provide the bandwidth necessary to accommodate real-time data transfer of important telemetered data to JCP&L operating systems, including enabling and providing the necessary communications capability and capacity for future integration with the advanced applications of the ADMS. Upgrading to a cellular-based interface where possible means that the RTUs will no longer depend on a wired communication interface, which is typically less reliable than a cellular interface.

The FirstEnergy communications team was asked to provide a list of JCP&L substation locations, which would benefit from accelerated RTU upgrades. In addition, any locations that will be affected by, or involved with, the DA Enablement component project are eligible for inclusion within this work scope, and in fact, the upgrades of these RTUs are required to achieve the full benefits of DA Enablement. For an illustration of the improvements to available real-time operational data from this SM component project, it may be helpful to refer to Figure 23 on page 46 for the pre- and post- implementation data points available to the DCC operator.

This SM component project will yield a benefit of CMI reduction. Engineering estimates predict that extended outages may be reduced by sixty minutes due to increased visibility of system conditions for DCC operators, facilitating more rapid service restoration. With both the RTU Replacement SM component project and the DA Enablement SR component project in place, the duration of outages will be reduced for affected customers in locations on the JCP&L distribution system benefiting from these component projects using automated circuit ties.

Completion of this SM component project is also intertwined with the Automatic Loop Scheme SR component project and adds to the layered approach taken throughout this Program to ensure consistency with the Circuit of the Future vision. Taken as separate components, the Loop Scheme, DA Enablement and RTU Replacement component projects can each add value and have clear benefits to the customers, but when executed together as part of the Circuit of the Future vision and as part of this Program, these component projects have a synergistic impact that is critical to prepare JCP&L's distribution system overall for the top tier Circuit of the Future building block (Integrated Grid Operations).

Planned investment by calendar year for this RTU Replacement SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
RTU Upgrades	\$ 4.60	\$ 9.21	\$ 6.90	\$ 6.90	\$ 3.68	\$ 3.68	\$ 34.99

SM Component: Mobile Substations

This SM component project supports the purchase of four new mobile substations. Within the Company's fleet of mobile substations, existing units were manufactured between 1958 and 2020, with an average age of thirty-seven years. JCP&L is looking to begin to retire some of the older less reliable mobile units, not necessarily and exclusively due to their age, but primarily due to increasing maintenance challenges such as obsolete or difficult-to-replace parts. Mobile units by nature are more susceptible to wear and tear than typical substation equipment that isn't transported. The replacement of these units will require a commissioning program of new mobiles prior to retiring the degraded units.

The new mobile substations will have a high-side operating voltage of 34.5kV and a low-side operating voltage of either 12.47kV or 4kV. Once purchased and delivered, these mobile substations will be immediately available for service and placed into the existing fleet of twelve mobile substations. The new mobile substations, along with other existing mobile substations, will be located in New Jersey and stored in secure facilities throughout the territory and will be used, among other things, to support the execution of other Program component projects. A reliable fleet of mobiles substations, with varying voltage configurations, is essential to support emergency restoration activities consistent with the Company's emergency restoration plan, facilitate planned maintenance activities, attend to corrective maintenance, support service restoration from substation equipment failure and support planned capital improvement projects throughout the Company's service territory.

With the theme of distribution system modernization within this Program, JCP&L's mobile fleet should be expanded to support both planned and emergency scenarios. Accessible mobile substations are a key tenet to the emergency restoration plan in the event of a significant substation equipment failure; one such case is shown in the photograph below, Figure 26, where a mobile substation was installed after the failure of a substation transformer to restore service to customers. Additionally, as much of the Program is focused on substation and distribution system improvements, to facilitate such work both within this Program and within the Company's base capital plan, mobile substations will be required in many cases to support completion of these EnergizeNJ projects, reduce outage exposure and to address loading constraints while work is ongoing.

Figure 26: Recent Emergency Mobile Substation Installation

A fleet of mobile substations also enables JCP&L to maximize the useful life of substation transformers and other major substation equipment. JCP&L's rigorous maintenance programs are designed to sustain these long-lived assets. To prevent extended outages at or near end of life for

this equipment JCP&L has documented mobile installation plans and pre-made cables ready to be used to connect the mobile substations to its existing substations. As such, when there is an equipment failure at a substation, a mobile substation can be deployed to restore service, usually within 24 hours.

Planned investment by calendar year for the Mobile Substations SM component project is shown in terms of millions of dollars in the table below:

Project Component	2024	2025	2026	2027	2028	2029	Total
Mobile Substations	\$ -	\$ -	\$ 2.90	\$ 2.90	\$ 2.90	\$ 2.90	\$ 11.60

IX. Conclusion

The Company's proactive (and vision-driven) strategy outlined within this Program proposal is required to close the anticipated comparative reliability performance gap expected due to the BPU's regulation changes as previously outlined in this Report. In addition, the varying impacts storm events in New Jersey have on the Company's recent reliability performance and in anticipation of near-term impacts from changes in reliability measurement, as well as increased electrification of the transportation sector, and increasing and more sophisticated demands from customers for reliable service, reinforces the Company's view that an immediate large-scale accelerated investment program is needed to enhance the ability and the capability of the JCP&L distribution system to meet such challenges and demands through design and construction projects that not only address current near-term challenges but which also catapult the Company forward in actualizing its long-term, Distribution Circuit of the Future vision. The three main projects comprised of their fourteen component projects in EnergizeNJ are designed not only to reduce the number and duration of sustained outages, and the number of customers impacted by normal and severe storm events, but also to better position the JCP&L distribution system to jumpstart the giant leap into a long-term commitment and focus on modernizing its distribution system through a consistent, dynamic and innovative vision (i.e., Distribution Circuit of the Future) that is conceived to address the long-term needs, which electric distribution systems are predicted to face.

In sum, EnergizeNJ proposes projects comprised of essential and integrated components intended to enhance the ability of the Company to deliver safe, adequate and proper service in the ordinary course, but also to enhance its ability to deal with outages and other contingencies more quickly and with better information, analysis and decision-making. Among other things, the integrated package of proposed projects will also facilitate the development and installation of future smart grid technologies. Indeed, in the process of delivering on its objectives, EnergizeNJ will also bring economic benefits to New Jersey, including job growth. Among these economic benefits are efficiency cost savings to JCP&L customers by more proactively and more efficiently (enabled by technology deployed in furtherance of the Distribution Circuit of the Future vision) performing the work necessary to address emergencies as well as storm and non-storm days through a portfolio of projects that have a positive benefit cost ratio that is estimated to generate over \$900800 million in storm and reliability benefits to customers.

This plan will accelerate the improvement of JCP&L's reliability performance to improve customer satisfaction, and better align with advancing distribution system technologies, and state-wide electrification goals, building our way toward the Distribution Circuit of the Future. These projects are designed to work together to drive overall incremental performance improvement across the JCP&L distribution system.

Finally, EnergizeNJ continues to build on the progress made in the Reliability Plus program, by continuing to accelerate its investment in projects that upgrade, harden and increase the flexibility of its distribution system, which will enable JCP&L to provide customers and communities with enhanced service which is safer, more reliable, and resilient and which provides substantial and quantifiable benefits to customers in pursuit of a comprehensive Circuit of the Future vision that will provide a roadmap for ongoing regular and special investment.

ATTACHMENT 1

Northern Region Description

The Northern Region, headquartered in Morristown, New Jersey, includes all or portions of the counties of Essex, Hunterdon, Mercer, Morris, Passaic, Somerset, Sussex, Union, and Warren. The Northern Region extends south from Montague and follows along the eastern bank of the Delaware River to Washington's Crossing, northeast to Somerset, east to Millburn, north to Ringwood, west to the Sussex County border, then north to Vernon and back to Montague. JCP&L customers located in the Northern Region are served by six operating districts. (*See* Figure 1). The districts are located in Boonton, Dover, Flemington, Newton, Summit, and Washington. The Northern Region features a wide variety of contrasts. There are some portions that are densely populated and others that are sparsely populated. The region serves as national or international headquarters for many large corporations. In addition, many corporations have located major research and development, manufacturing, operating, or data center facilities in this region. Other major customers within this territory include other utilities, universities, transportation entities, major medical centers, etc. During 2022, several major customers continued major expansion projects. Approximately 2,300 critical facilities are located in the Northern Region, including nearly thirty hospitals.

Central Region Description

The Central Region, currently headquartered in Holmdel, New Jersey, includes all or portions of the counties of Burlington, Mercer, Middlesex, Monmouth, and Ocean. The Central Region follows the Raritan River from Sayreville to the Atlantic coast and covers the coast south to Barnegat, inland and west to Wrightstown, north to Hightstown and northeast back to Sayreville. JCP&L customers located in the Central Region are served by eight operating districts. (See Figure 1). The districts are located in Union Beach, Cookstown, Freehold, Lakewood, Long Branch, Old Bridge, Point Pleasant, and Berkeley. The Central Region features a wide variety of demographic and geographic contrasts. The western portion of the territory has farmland communities, while the eastern portion is home to Jersey Shore communities, including two urban cities, Asbury Park and Long Branch. Major redevelopment projects continue in Asbury Park, Long Branch and the rebuilding of the homes and businesses on the barrier island, directly or indirectly as a result of the impacts of Super Storm Sandy. The Central Region serves as headquarters for several large corporations and major military complexes (Joint Base MDL, US Navy Earle). Other major customers include other utilities, transit authorities, colleges and universities, large medical centers, major residential retirement and assisted living communities, large shopping malls, two racetracks, amusement parks, and a minor league baseball stadium. During 2022, JCP&L continued to work with the Fort Monmouth Economic Redevelopment Authority to add a new substation and improve the distribution grid at a former military base. Several large projects, including residences and commercial space, have begun development on the base. Approximately 2,200 critical facilities are located in the Central Region, including nearly twenty hospitals.

Capital Baseline	2024	2025	2026	2027	2028	2029	•	
Proposed Baseline Capital ¹	\$ 147,000,000	\$ 147,000,000	\$ 147,000,000	\$ 147,000,000	\$ 147,000,000	\$ 147,000,000		
Base Capital Similar to EnergizeNJ ²	2024	2025	2026	2027	2028	2029		Total
Grid Modernization	\$ 512,865		\$ 6,235,595		\$ 8,352,669	\$ 2,942,965	\$	18,044,094
System Resiliency		\$ 1,248,731	\$ 3,925,159	\$ 47,634,682		\$ 6,279,234	\$	59,087,805
Substation Modernization					\$ 2,374,495	\$ 2,849,043	\$	5,223,538
	\$ 512,865	\$ 1,248,731	\$ 10,160,754	\$ 47,634,682	\$ 10,727,164	\$ 12,071,242	\$	82,355,437
Total EnergizeNJ Capital	\$ 87,846,146	\$ 195,183,530	\$ 101,607,537	\$ 210,933,096	\$ 107,271,643	\$ 120,712,421	\$	823,554,373
Base Capital Similar to EnergizeNJ	\$ 512,865	\$ 1,248,731	\$ 10,160,754	\$ 47,634,682	\$ 10,727,164	\$ 12,071,242	\$	82,355,437
Base Capital Ratio to Total EnergizeNJ	1%	1%	10%	23%	10%	10%		10%

⁽¹⁾ Proposed baseline is the 5-year average of 2018 - 2022 base capital spend. Refer to Schedule DIG-2.

⁽²⁾ The Company acknowledges it must maintain capital expenditures in base capital at least equal to 10% of the approved JCP&L EnergizeNJ, as amended.

Major Category		2018		2019		2020		2021		2022	5-Year Avg
Metering	\$	7,934,259	\$	7,203,467	\$	7,072,154	\$	7,005,844	\$	7,224,084	\$ 7,287,962
Other	\$	47,714,844	\$	(6,298,895)	\$	11,073,332	\$	1,685,440	\$	(4,684,228)	\$
Replacements & Improvements	\$	58,970,579	\$	75,298,700	\$	69,350,348	\$	74,331,225	\$	77,018,583	\$ 70,993,887
Vegetation Management	\$		\$	-	\$	-	\$	-	\$	-	\$ -
Reliability	\$	12,207,305	\$	28,331,813	\$	24,955,718	\$	20,508,173	\$	18,780,145	\$ 20,956,631
Street Lighting	\$	7,849,291	\$	9,049,693	\$	9,527,244	\$	11,414,000	\$	9,994,390	\$ 9,566,924
System Reinforcements	\$	8,324,513	\$	11,032,782	\$	27,565,484	\$	19,645,054	\$	19,337,151	\$ 17,180,997
Facilities	\$	2,593,388	\$	3,039,681	\$	2,676,573	\$	5,394,959	\$	8,966,367	\$ 4,534,194
Tools & Equipment	\$	3,123,336	\$	6,435,033	\$	2,384,991	\$	9,301,559	\$	11,576,330	\$ 6,564,249
Total Base Capital	\$	148,717,515	\$	134,092,276	\$	154,605,844	\$	149,286,253	\$	148,212,823	\$ 146,982,942
Damage Claims	\$	1,099,581	\$	4,830,401	\$	4,901,270	\$	3,822,306	\$	7,324,712	
Joint Use	\$	487,230	\$	2,341,075	\$	5,219,679	\$	4,172,773	\$	3,746,970	
New Business	\$	16,790,717	\$	43,451,497	\$	40,066,997	\$	45,844,718	\$	46,238,374	
Relocations	\$	(275,970)	\$	5,041,370	\$	6,193,866	\$	8,413,716	\$	7,124,285	
Storms	\$	112,430,224	\$	60,484,369	\$	74,364,461	\$	37,611,853	\$	28,628,489	
Total Other Than Base Capital	\$	130,531,781	\$	116,148,714	\$	130,746,273	\$	99,865,367	\$	93,062,829	
Energy Efficiency	\$	-	\$	-	\$	-	\$	4,407,069	\$	27,058,532	
AMI	\$	-	\$	-	\$	_	\$	_	\$	18,388,286	
EV Program	\$	-	\$	-	\$	-	\$	-	\$	314,958	
IIP Reliability Plus Program	\$	-	\$	39,052,555	\$	62,132,960	\$	-	\$	-	
Investment Programs	\$	-	\$	39,052,555	\$	62,132,960	\$	4,407,069	\$	45,761,776	
Total Distribution	ø	279,249,297	¢	289,293,544	¢	347,485,078	¢	253,558,689	¢	287,037,428	
ו טנמו שוטנו ושענו טוו	Ф	Z13,Z43,Z91	Ф	203,233,344	Ψ	341,400,010	Ф	253,550,009	Φ	201,U31,420	

Month	2024	2025	2026	2027	2028	2029	Total
January	\$ -	\$ 2,306,493	\$ 659,239	\$ 6,955,257	\$ 2,613,495	\$ 2,385,515	\$ 14,919,998
February	\$ -	\$ 2,306,493	\$ 667,569	\$ 6,955,257	\$ 2,531,045	\$ 2,385,515	\$ 14,845,878
March	\$ -	\$ 12,511,420	\$ 6,264,383	\$ 15,203,191	\$ 8,444,046	\$ 9,681,701	\$ 52,104,742
April	\$ -	\$ 2,306,493	\$ 667,569	\$ 6,955,257	\$ 2,531,045	\$ 2,303,065	\$ 14,763,428
May	\$ -	\$ 2,306,493	\$ 667,569	\$ 6,955,257	\$ 2,613,495	\$ 2,303,065	\$ 14,845,878
June	\$ 7,670,721	\$ 86,084,458	\$ 83,411,401	\$ 89,367,758	\$ 65,617,686	\$ 113,724,803	\$ 445,876,827
July	\$ 7,670,721	\$ 1,764,831	\$ 741,689	\$ 8,429,235	\$ 2,508,831	\$ -	\$ 21,115,307
August	\$ 20,803,478	\$ 1,764,831	\$ 741,689	\$ 8,429,235	\$ 2,508,831	\$ -	\$ 34,248,064
September	\$ 7,670,721	\$ 13,138,678	\$ 6,338,503	\$ 16,759,619	\$ 8,159,300	\$ -	\$ 52,066,821
October	\$ 7,670,721	\$ 1,764,831	\$ 750,019	\$ 8,511,685	\$ 2,591,281	\$ -	\$ 21,288,537
November	\$ 7,670,721	\$ 1,764,831	\$ 750,019	\$ 8,511,685	\$ 2,591,281	\$ -	\$ 21,288,537
December	\$ 29,201,929	\$ 68,412,407	\$ 10,108,643	\$ 75,534,340	\$ 15,288,472	\$ -	\$ 198,545,791
Total ¹	\$ 88,359,011	\$ 196,432,260	\$ 111,768,291	\$ 258,567,778	\$ 117,998,808	\$ 132,783,664	\$ 905,909,810

BEFORE THE

NEW JERSEY BOARD OF PUBLIC UTILITIES

In The Matter Of The Verified Petition Of Jersey Central Power & Light Company For Approval Of An Infrastructure Investment Program ("EnergizeNJ")

BPU Docket No. EO23110793

Direct Testimony of Carol A. Pittavino (Amended)

On Behalf of Jersey Central Power & Light Company

February 27, 2023

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	REVENUE REQUIREMENTS	1
III.	BASE RATE ADJUSTMENT FILINGS	8
IV.	BILL IMPACTS	.15
V.	CONCLUSION	.17

1 I. **INTRODUCTION** REVENUE REQUIREMENTS 2 II. 3 Q. How does JCP&L propose to calculate the revenue requirements? 4 For each base rate adjustment filing, JCP&L proposes to calculate the revenue A. 5 requirements associated with the Program costs using the following formula: 6 Revenue Requirements = $[(Pre-Tax\ Cost\ of\ Capital\ *\ Rate\ Base)]$ 7 + Depreciation and/or Amortization] 8 The Company will also apply the appropriate factor to collect applicable sales and use tax. 9 Q. Please describe the components of JCP&L's proposed revenue requirement 10 calculation. The "Pre-Tax Cost of Capital * Rate Base" component provides recovery of the return on 11 A. 12 the Program investment. The term "Pre-Tax Cost of Capital" means JCP&L's pre-tax overall weighted average cost of capital ("WACC") for the Program. JCP&L proposes to 13 14 earn a return on its net investment in EnergizeNJ based upon an authorized return on equity ("ROE") and capital structure including income tax effects. The Company's initial WACC 15 16 for the Program will be based on the ROE, long-term debt and capital structure approved 17 by the Board on February 14, 2024 in the 2023 JCP&L base rate case, BPU Docket No. 18 ER23030144. JCP&L proposes the initial pre-tax WACC to be 9.13 percent. See Schedule 19 CAP-1 for the calculation of the current Pre-Tax and After-Tax WACC. Any change 20 resulting after the effective date of the Board's order in the WACC authorized by the Board 21 following this filing, will be reflected in the subsequent revenue requirement calculations 22 and subsequent base rate adjustment filings for EnergizeNJ. Any changes to current tax

rates will be reflected in an adjustment to the WACC.

23

EXHIBIT JC-3 (Amended)

The term "Rate Base" refers to all plant constructed and in-service ("Plant In-
Service") less the associated accumulated depreciation and/or amortization and less
accumulated deferred income taxes ("ADIT"). The book recovery of each asset class and
its associated tax depreciation will be based on current depreciation rates.

ADIT is calculated as book depreciation less tax depreciation, multiplied by the statutory composite federal and state income tax rate, which is currently 28.11%. Any future changes to the book or tax depreciation rates during the Program construction period and at the time of each rate adjustment, will be reflected in the accumulated depreciation and/or ADIT calculation described above.

The "Depreciation and/or Amortization" component provides for recovery of the Company's investment in the Program assets over the useful book life of each asset class. The book recovery of each asset class will be based on current depreciation rates, which, as shown here, include net salvage. *See* the chart below.

	JERSEY CENTRAL POWER & LIGHT COMPANY	
Calculat	ed Annual Depreciation Accruals Related to Di	stribution
	(as of December 31, 2012)	
		Total
Plant		Annual
Account	Distribution Plant	Accrual (%)
360.12	Distribution Substation Easements	1.31
360.22	Distribution Line Easements	0.73
361.00	Structures and Improvements	0.83
361.20	Structures and Improvements - Clearing	1.50
362.00	Substation Equipment	1.39
364.00	Poles, Towers and Fixtures	2.90
365.00	Overhead Conductors and Devices	2.72
365.10	Overhead Conductors and Devices - Clearing	1.56
366.00	Underground Conduit	1.29
367.00	Underground Conductors and Devices	1.89
368.00	Line Transformers	2.54
369.00	Services	1.21
370.00	Meters	7.47
371.00	Installations on Customer premises	4.18
373.00	Street Lighting and Signal Systems	3.33
	Total Distribution Plant Average	2.39

For Plant In-Service, the depreciation expense is calculated as the book depreciation expense. Any future changes to the book depreciation or tax rates during the construction period of the Program and at the time of each base rate adjustment filing, will be reflected in the depreciation expense calculation described above.

Uncollectible expense associated with EnergizeNJ is not included in the revenue requirement because it will be recovered along with other uncollectible expenses in JCP&L's existing Rider Uncollectible Accounts Charge or "UNC".

9 Q. Please describe the type of expenditures to be included in rate base.

A. Rate base includes all capital expenditures associated with the EnergizeNJ projects, including actual costs of engineering, design, construction, and property acquisition,

EXHIBIT JC-3 (Amended)

including actual labor, materials, overhead, and capitalized allowance for funds used during construction ("AFUDC") associated with the projects (the "Capital Investment Costs"). Capital Investment Costs will be recorded in an associated Construction Work In-Progress ("CWIP") account during construction and then in a Plant In-Service account upon the respective project being deemed used and useful.

6 Q. Does rate base include net of salvage?

7 A. Yes. Under Federal Energy Regulatory Commission ("FERC") accounting rules, net 8 salvage is recorded as part of accumulated depreciation. Net salvage rates are included as 9 part of the depreciation accrual rates.

10 Q. Will any of the Program expenditures be eligible for AFUDC?

11 A. Yes, they will. The Board's II&R rules at N.J.A.C. 14:3-2A.4(e) recognize AFUDC as a
12 component of construction costs representing the net cost of borrowed funds and an equity
13 return rate used during the period of construction. AFUDC will be applied to capitalized
14 costs for any and all projects that have been started, but not placed in service within the
15 same calendar month.

16 Q. How will AFUDC be calculated on eligible projects?

17 A. The Company accrues AFUDC on eligible projects utilizing the "full FERC method" as 18 set forth in FERC Order 561. AFUDC is accrued monthly and capitalized to CWIP until 19 the project is placed in service.

1	Q.	Will the Company utilize AFUDC once the projects are placed in service?
2	A.	No. The Company will not accrue any AFUDC on projects that have already been placed
3		in service. This is consistent with the Board's II&R rules at N.J.A.C. 14:3-2A.4(e).
4	Q.	Will any CWIP balances be included in the revenue requirement calculation?
5	A.	No. Consistent with N.J.A.C. 14:3-2A.6(a), and as discussed above, only Plant In-Service
6		is included in rate base in the revenue requirement calculation, meaning plant that is
7		functioning for its intended purpose, is in use (i.e., not under construction), and useful (i.e.,
8		actively helping the Company provide service). Thus, the Company's annual and semi-
9		annual base rate adjustment filings will seek recovery only for projects identified in
10		EnergizeNJ that have been placed in Plant In-Service.
11	Q.	Is there a witness sponsoring the expenditures that you use to calculate revenue
12		requirements?
13	A.	Yes. The projected expenditures for the Program projects are \$930.5 million, which are
14		provided by Company witness Dana I. Gibellino in Schedule DIG-3 to her amended direct
15		testimony (Exhibit JC-2).

18 A. Yes. The revenue requirement reflects the new federal corporate tax rate of 21%. Tax 19 depreciation uses Modified Accelerated Recovery Systems depreciation rules without

Does the revenue requirements calculation reflect the pertinent provisions of the Tax

bonus depreciation.

Cut and Jobs Act?

16

17

Q.

1	Q.	Have you	provided a	schedule show	ing the calcu	ulation of reve	nue requirements?

- 2 A. Yes. Schedule CAP-2 to this direct testimony sets forth an illustrative calculation of the
- 3 EnergizeNJ revenue requirements for annual and semi-annual periods, which I have
- 4 calculated based on the forecasted capital costs and in-service dates provided by Ms.
- 5 Gibellino in Schedule DIG-3 to her amended direct testimony (Exhibit JC-2).
- 6 Q. Does the Company propose annual baseline capital spending levels over the duration
- 7 of EnergizeNJ (see N.J.A.C. 14:3-2A.3(a) and (b) and 14:3-2A.5(b)(6))?
- 8 A. Yes. The Company proposes annual baseline capital spending levels for its Program over
- 9 its duration, as set forth in Schedule DIG-1 to Ms. Gibellino's amended testimony. While
- the Company plans to meet the baseline capital spending level on a program-year basis,
- the Company nonetheless will meet the requirements in the regulations regarding baseline
- capital spending levels, provided its baseline capital spending meets or exceeds the
- established baseline capital spending level, on average, over the five-year duration of
- EnergizeNJ.
- 15 Q. What is the basis for the Company's proposed annual baseline capital spending
- levels?
- 17 A. The establishment of annual baseline spending levels is a regulatory condition for the
- approval of an infrastructure investment program such as EnergizeNJ. As set forth in the
- II&R Rules, the annual baseline spending levels are the level of capital investment that
- 20 must be achieved during the term of the Program that can only be recovered via base rates
- 21 (i.e., N.J.A.C. 14:3-2A.3(a)). During the term of EnergizeNJ, the Company proposes base
- capital expenditures of \$147 million as its annual baseline. The baseline was established

using a 5-year historical average of base capital expenditures, as set forth in Schedule DIG-2 to the amended testimony of Ms. Gibellino. The base capital excludes certain capital expenditures, such as customer requested work, storm costs and damage claims, which are uncontrollable costs for services provided on demand and/or request and consequently are not appropriate to include in the baseline.

A.

The Company's approach is consistent with <u>N.J.A.C.</u> 14:3-2A.3(b), which requires the utility to provide appropriate data to justify its proposed annual baseline spending levels, which may include historical capital expenditure budgets, projected capital expenditure budgets, depreciation expense, and/or any other data relevant to the utility's proposed baseline spending level. <u>N.J.A.C.</u> 14:3-2A.3(c) provides that the Board may consider such data, including depreciation expenses, in establishing annual baseline spending levels.

- Q. Does the Company plan to make capital expenditures, within its baseline capital expenditures, on projects similar to those included in EnergizeNJ that will not be recovered via the accelerated rate recovery mechanism?
 - Yes, the Company plans to maintain capital expenditures of at least 10% of the approved Program expenditures on projects similar to those proposed in JCP&L Reliability Plus. These capital expenditures will be made in the normal course of business and recovered in future base rate proceedings. Such capital expenditures will not be recovered via the accelerated rate recovery mechanism described in this amended direct testimony, which is consistent with the II&R rules, N.J.A.C. 14:3-2A.2(c). This is demonstrated in Schedule DIG-1 to Ms. Gibellino's amended direct testimony (Exhibit JC-2).

III. BASE RATE ADJUSTMENT FILINGS

Q. How does the Company propose to recover the revenue requirements as describedabove?

The Company proposes to recover the revenue requirements associated with the Program through base rate adjustment filings (*i.e.*, base rate roll-ins) no more frequently than a semi-annual basis, consistent with the II&R Rules, N.J.A.C. 14:3-2A.6(a). As stated in Ms. Gibellino's amended direct testimony, the Company plans to begin construction work on or about June 1, 2024. The Company anticipates that its first semi-annual base rate adjustment filing will provide for recovery of revenue requirements for plant placed into service through December 31, 2024, with rates taking effect on April 1, 2025.

Based on the forecasted capital expenditures and in-service dates, the target schedule for annual and semi-annual base rate adjustment filings is listed below. The Company reserves the right to deviate from this schedule based on unforeseen circumstances such as material and/or construction delays and major storms provided, however, it meets the filing requirements of the regulations.

	JCP&L EnergizeNJ Target Rate Filing Schedule					
Filing	Initial Filing	Investment as of	Update for Actuals	Rates Effective		
1	October 15, 2024	December 31, 2024	January 15, 2025	April 1, 2025		
2	April 15, 2025	June 30, 2025	July 15, 2025	October 1, 2025		
3	April 15, 2026	June 30, 2026	July 15, 2026	October 1, 2026		
4	April 15, 2027	June 30, 2027	July 15, 2027	October 1, 2027		
5	October 15, 2027	December 31, 2027	January 15, 2028	April 1, 2028		
6	October 15, 2028	December 31, 2028	January 15, 2029	April 1, 2029		
7	April 15, 2029	June 30, 2029	July 15, 2029	October 1, 2029		

A.

1		Under the proposed schedule, base rate adjustment filings would occur no more frequently
2		than each October 15 and April 15, following the above-identified filings with the Board.
3	Q.	Is JCP&L's cost recovery proposal consistent with the Board's II&R regulations?
4	A.	Yes, with one exception. The Company's cost recovery proposal is for semi-annual and
5		annual rate recovery filings and JCP&L will seek recovery, at a minimum, of at least ten
6		percent (10%) of the overall Program expenditures, in accord with N.J.A.C. 14:3-2A.6 (a)
7		and (b). In addition, JCP&L's proposal is consistent with the requirements of N.J.A.C.
8		14:3-2A.6 (c) and (e through i), as I discuss below.
9		However, rather than recovering Program costs through a "separate clause of the
10		utility's Board-approved tariff" as specified in N.J.A.C. 14:3-2A.6(d), JCP&L is proposing
11		to recover the costs via semi-annual and annual base rate adjustments. In its Petition, the
12		Company is requesting a waiver of this subpart of N.J.A.C. 14:3-2A.6(d) to accommodate
13		this aspect of the cost recovery mechanism.
14	Q	Why is JCP&L proposing to recover the Program costs through base rate
15		adjustments rather than via a separate clause of its tariff?
16	A.	There are several reasons. First, the majority of the costs under the Program will be capital
17		expenditures. Capital investments of this nature are commonly recovered via inclusion in
18		a utility's rate base rather than through a rate clause.
19		Second, by including Program costs directly in base rates, the Board-approved rate
20		design for the Company's base rates will apply. Rate design in a rate clause or rider does
21		not always match the design of base rates.

1	Third is administrative ease.	It obviates the need	for an additional rate of	clause. This
2	would reduce administrative burg	dens on both JCP&L	and the Board.	

3 Q. Is each EnergizeNJ rate filing conditioned on a minimum level of investment?

Yes. Each rate filing will include a minimum investment level of ten percent (10%) of the 4 A. 5 total Program capital investment less matching amounts in base capital, consistent with the 6 II&R rules, N.J.A.C. 14:3-2A.6(b). The Program investment is defined as all capital 7 expenditures, excluding AFUDC. Based on the proposed expenditure forecast for EnergizeNJ, JCP&L's initial filing is planned for October 15, 2024 for rates effective April 8 9 1, 2025.

10 Will the rate requests to recover additional Program investments be subject to an Q. earnings test?

11

12

13

14

15

16

17

18

19

A.

Yes, the Company will include an appropriate earnings test in each rate filing to adjust base rates. The earnings test will be calculated in accordance with the description in Attachment D, item number 14, as attached to the Company's Stipulation of Settlement as provided in the JCP&L Reliability Plus Program Final Decision and Order approving the Stipulation of Settlement in BPU Docket No. EO18070728. If the Company exceeds the allowed ROE from the utility's last base rate case by fifty basis points or more for the most recent twelvemonth period, the pending full rate adjustment shall not be allowed for the applicable filing period.

- 1 Q. Should JCP&L's ROE exceed the earnings test threshold (i.e., its most recent
- authorized ROE plus 50 basis points), when would JCP&L be permitted to recover
- 3 on the incremental capital investment?

10

11

12

13

14

15

16

17

18

19

20

21

22

23

- 4 A. Should JCP&L's ROE exceed the earnings test threshold, JCP&L would continue to
- 5 recover on its capital investments associated with EnergizeNJ that have already been
- 6 included in base rates; however, it would only be permitted to recover additional capital
- 7 investments through a base rate adjustment once its ROE was equal to or below the
- 8 earnings test threshold or at the conclusion of its next base rate case, whichever comes first.

9 Q. How does the Company propose to calculate this earnings test?

A. The earnings test shall be determined based on the actual net income of the utility for the most recent twelve-month period divided by the average of the beginning and ending common equity balances for the corresponding period, subject to certain adjustments. *See*N.J.A.C. 14:3-2A.6(h). The Company will utilize FERC accounting data from the twelve-month period. In a manner similar to capital expenditures, the Company will provide nine months of actual data and three months of forecast data at the time of its initial filing. The three months of forecasted data will be updated with actual information at the same time the Company updates investment for actual periods as set forth in the schedule above. An adjustment to the earnings calculation to pension and OPEB expense will be made using the following steps: (1) remove the pension and OPEB mark-to-market gains/losses recorded by JCP&L; and (2) include, for EnergizeNJ earnings test purposes, the recalculated amount of the most recent 12-month test-year pension and OPEB expense by amortizing the net accumulated actuarial loss over future periods using the delayed recognition method.

1	Q.	Why is it necessary to include an adjustment to the pension and OPEB expense in the
2		earnings test?

A.

JCP&L's book pension and OPEB expense is now determined using an entirely different accounting method than is used to determine the pension and OPEB expense for ratemaking purposes. In 2011, FirstEnergy and its subsidiaries (including JCP&L), under Accounting Standards Codification 715 "Compensation-Retirement Benefits," elected to change the method by which they accounted for pension and OPEB expense whereby actuarial gains and losses – representing the change in value of plan assets or obligations - are recognized immediately in earnings (referred to as "mark-to-market accounting", or "immediate recognition") as opposed to its previous method, which amortized those costs into earnings over a future period (referred to as "delayed recognition"). For ratemaking purposes, JCP&L uses the delayed recognition methodology, *i.e.*, the accounting methodology by which it accounted for pension and OPEB expense prior to the accounting change and which is consistent with the recommendations of the Administrative Law Judge in the Company's 2012 base rate case and the BPU's determinations in the Company's 2016 and 2020 base rate cases.

Using the immediate recognition methodology would be problematic with regards to the earnings test because, unlike the ratemaking method endorsed by the BPU, it results in the full amount of actuarial gains and losses being recognized in earnings immediately, in the year incurred. These gains or losses can be tens of millions of dollars in a single year. However, using delayed recognition, actuarial gains and losses would be amortized over a future period, which levelizes the annual impact to operating expense. Delayed recognition results in less volatile pension/OPEB expense and, therefore earnings, producing a more

representative, steady-state view of the annual earnings from the Company's operations for the earnings test.

3 Q. Why should this adjustment be incorporated in the earnings test for EnergizeNJ?

A. JCP&L considers the proposed adjustment to be an accounting adjustment, replacing one accepted method of Generally Accepted Accounting Principles "GAAP" accounting with another, based on the same costs for pension/OPEB expense. This accounting adjustment is proper in the context of the Program earnings test to correlate the accounting treatment for pension/OPEB expense with the accounting treatment used by the Board for ratemaking.

Q. Will the BPU, Board Staff and/or Rate Counsel have an opportunity to review the actual expenditures of the Program?

A.

Yes. As addressed above, following BPU approval of the Program, JCP&L will make annual and semi-annual filings in a process providing actual expenditures as they exist at the time of the initial filing and in the update filing. BPU Staff and Rate Counsel may review each rate filing to ensure that the revenue requirements and proposed rates are being calculated in accordance with the BPU Order approving the Program. Further, in accordance with N.J.A.C. 14:3-2A.6(e), the rate adjustments established in the annual and semi-annual EnergizeNJ base rate adjustment filings are provisional. The prudence of the Company's Program expenditures will be reviewed by Staff and Rate Counsel as part of JCP&L's subsequent base rate cases following the filings. The base rate changes via the annual and semi-annual adjustment filings are subject to refund until final determination in a base rate case by the Board that JCP&L prudently incurred these capital expenditures.

- 1 Q. Does the Company plan to file a future base rate case in connection with EnergizeNJ?
- 2 A. Yes. The Company proposes that it will file its next rate case not later than five years after
- 3 the start date of EnergizeNJ (e.g., if implemented June 1, 2024, the next base rate filing
- 4 would be made not later than June 1, 2029). Should the Company elect to file a base rate
- 5 case before the conclusion of EnergizeNJ, that would also satisfy the base rate case filing
- 6 requirement of the II&R regulations.
- 7 Q. What is the projected revenue requirement for the initial rate recovery period?
- 8 A. The revenue requirement for the forecasted initial base rate adjustment will be for Plant In-
- 9 Service from Board approval of EnergizeNJ through December 31, 2024, and is currently
- forecasted to be \$828,172 for the period June 1, 2024 through December 31, 2024. See
- Schedule CAP-2.
- 12 Q. What rate design is the Company proposing to use for the base rate adjustments?
- 13 A. The Company proposes to allocate the revenue requirement associated with each base rate
- adjustment proportionately with the total non-customer related revenue allocations by
- service classification approved in the Company's most recent 2023 base rate case. The
- revenue requirement allocated to each service classification will be recovered through
- kilowatt hour ("kWh") charge for residential and small commercial customers on Service
- 18 Classifications RS, RT, RGT and GS, kW charge for large C/I customers on Service
- 19 Classifications GST, GP and GT, and Fixture charge for lighting customers on Service
- Classifications OL, SVL, ISL, MVL and LED The detailed calculations supporting the
- rate for the first forecasted filing is shown in Schedule CAP-3. In addition, Schedule CAP-
- 22 3 provides a summary of the proposed rates for all forecasted rate filings. Any rate design

1	changes, which would occur from subsequent base rate cases will be incorporated into
2	future filings.

IV. BILL IMPACTS

4 Q. Please address the current level of JCP&L's rates.

Q.

A.

A. JCP&L's rates (delivery and total including basic generation service ("BGS")) are generally the lowest for residential customers among the State's four electric distribution companies. "Delivery" refers to the distribution rate plus the non-bypassable rate charges and taxes; "total" refers to the delivery rate plus BGS charges.

What are the annual EnergizeNJ rate impacts to the typical residential customer?

Based upon the forecasted rates shown in Schedule CAP-3, the bill impacts for a typical residential customer, as well as rate class average customers for each rate period over the duration of EnergizeNJ, are set forth in Schedule CAP-4. Based on the estimated revenue requirements provided in Schedule CAP-2, the initial bill impact of the proposed rates effective on April 1, 2025, for the initial rate filing period to the typical residential customer who uses 777 kWh per month is an increase of 0.3% or approximately \$0.42 per month from current bill based on approved distribution rates effective June 1, 2024 and all other rates in effect as of February 1, 2024.

A summary of the bill impact on a typical residential customer for each year of EnergizeNJ compared to the current average monthly bill is shown in the following chart.

			Typical Residential Customer on RS Rate									
	Current	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed				
	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly				
	Bill (1)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)				
		4/1/2025	10/1/2025	10/1/2026	10/1/2027	4/1/2028	4/1/2029	10/1/2029				
Residential (RS) using 777 kW per Month	\$121.80	\$122.22	\$122.82	\$123.70	\$124.58	\$124.82	\$124.99	\$125.87				
Incremental Increase		\$0.42	\$0.60	\$0.88	\$0.88	\$0.24	\$0.17	\$0.89				
% of Incremental Increase		0.3%	0.5%	0.7%	0.7%	0.2%	0.1%	0.7%				
Cumulative Increase from Current		\$0.42	\$1.02	\$1.90	\$2.78	\$3.01	\$3.18	\$4.07				
% of Cumulative Increase from Current		0.3%	0.8%	1.6%	2.3%	2.5%	2.6%	3.3%				
{1} Rates effective 2/1/2024, except for Customer Charge and Distribution Charge effective 6/1/2024												
(2) IIP rates rolled into Base Rates effective as proposed, all other rates unchanged from February 1, 2024.												

The maximum cumulative bill impact from EnergizeNJ on a typical residential customer over the entire duration of the Program is a modest increase of approximately \$4.07, or about 3.3% of the current average monthly bill. However, the average incremental bill impact from any individual base rate adjustment over the course of the Program will be a fraction of that cumulative impact.

Q. Does the Company propose to hold public comment hearings on EnergizeNJ?

A. Yes. The Company proposes to hold public comment hearings in accordance with the BPU II&R rules, N.J.A.C. 14:3-2A.5(d). A proposed form of public notice of filing and public hearing, including the proposed rates and bill impacts attributable to the proposed implementation of the Program, will be provided to Board Staff and Rate Counsel shortly following the EnergizeNJ filing.

13 Q. Please list the schedules attached to this amended direct testimony.

- 14 A. The amended schedules are as follows:
- Schedule CAP-1 (Amended) Weighted Average Cost of Capital
- Schedule CAP-2 (Amended) Revenue Requirements For EnergizeNJ Rate Filings
- 17 **Schedule CAP-3 (Amended)** Rate Derivation and Proof of Revenues
- 18 **Schedule CAP-4 (Amended)** Bill Impact Summary

19

1

2

3

4

5

6

7

1 V. <u>CONCLUSION</u>

- 2 Q. Does this conclude your pre-filed amended direct testimony at this time?
- 3 A. Yes.

Weighted Average Cost of Capital (WACC)

	<u>Ratio</u>	<u>Rate</u>	<u>Pre-Tax</u>	<u>Post-Tax</u>
Debt	48.10%	4.57%	2.20%	2.20%
Equity	51.90%	9.60%	6.93%	4.98%
			9.13%	7.18%
Tax Rate	28.11%			
Tax Factor	1.39			

	Г		Rat	te Base Calculation		Monthly	Monthly Revenue Requirement			
	_	Cumulative	Cumulative				•			
		PIS	Reserve	NBV	ADIT	Rate Base		Depreciation	Return	Total
January	2024	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0
February	2024	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0
March	2024	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0
April	2024	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0
May	2024	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0
June	2024	\$6,877,165	\$707,717	\$7,584,882	(\$2,191)	\$7,582,691		\$13,697	\$57,690	\$71,387
July	2024	\$13,754,330	\$1,401,737	\$15,156,068	(\$6,573)	\$15,149,495		\$27,394	\$115,259	\$142,653
August	2024	\$33,764,252	\$2,055,904	\$35,820,157	(\$17,329)	\$35,802,827		\$67,247	\$272,392	\$339,639
September	2024	\$40,641,418	\$2,696,374	\$43,337,792	(\$30,277)	\$43,307,515		\$80,944	\$329,488	\$410,432
October	2024	\$47,518,583	\$3,323,148	\$50,841,730	(\$45,416)	\$50,796,315		\$94,641	\$386,463	\$481,104
November	2024	\$54,395,748	\$3,936,224	\$58,331,972	(\$62,745)	\$58,269,227		\$108,338	\$443,318	\$551,656
December	2024	\$82,717,497	\$4,571,643	\$87,289,140	(\$89,098)	\$87,200,042		\$164,745	\$663,427	\$828,172
January	2025	\$84,890,266	\$4,524,139	\$89,414,404	(\$116,142)	\$89,298,262		\$169,072	\$679,390	\$848,462
February	2025	\$87,063,034	\$4,472,307	\$91,535,341	(\$143,879)	\$91,391,462		\$173,399	\$695,315	\$868,714
March	2025	\$98,954,558	\$4,838,767	\$103,793,325	(\$175,405)	\$103,617,920		\$197,083	\$788,336	\$985,419
April	2025	\$101,127,326	\$4,758,924	\$105,886,251	(\$207,622)	\$105,678,628		\$201,410	\$804,014	\$1,005,424
May	2025	\$103,300,095	\$4,674,755	\$107,974,850	(\$240,532)	\$107,734,318		\$205,737	\$819,653	\$1,025,390
June	2025	\$182,867,980	\$10,234,703	\$193,102,682	(\$304,380)	\$192,798,303		\$364,210	\$1,466,829	\$1,831,039
July	2025	\$184,538,699	\$9,952,721	\$194,491,420	(\$374,347)	\$194,117,072		\$367,538	\$1,476,862	\$1,844,400
August	2025	\$186,209,418	\$9,667,411	\$195,876,829	(\$461,108)	\$195,415,722		\$370,866	\$1,486,742	\$1,857,608
September	2025	\$198,672,390	\$9,886,001	\$208,558,391	(\$557,427)	\$208,000,965		\$395,688	\$1,582,492	\$1,978,180
October	2025	\$200,343,110	\$9,572,541	\$209,915,651	(\$659,867)	\$209,255,784		\$399,016	\$1,592,039	\$1,991,055
November	2025	\$202,013,829	\$9,255,753	\$211,269,582	(\$768,427)	\$210,501,155		\$402,344	\$1,601,514	\$2,003,858
December	2025	\$265,413,721	\$13,283,970	\$278,697,692	(\$920,200)	\$277,777,491		\$528,615	\$2,113,359	\$2,641,974
January	2026	\$265,977,235	\$12,790,028	\$278,767,263	(\$1,073,918)	\$277,693,344		\$529,737	\$2,112,719	\$2,642,456
February	2026	\$266,548,321	\$12,294,948	\$278,843,269	(\$1,229,584)	\$277,613,685		\$530,874	\$2,112,113	\$2,642,987
March	2026	\$271,941,604	\$12,054,943	\$283,996,547	(\$1,396,632)	\$282,599,916		\$541,616	\$2,150,049	\$2,691,665
April	2026	\$272,512,691	\$11,547,984	\$284,060,675	(\$1,565,627)	\$282,495,048		\$542,753	\$2,149,251	\$2,692,004
May	2026	\$273,083,777	\$11,039,889	\$284,123,666	(\$1,736,569)	\$282,387,096		\$543,890	\$2,148,429	\$2,692,319
June	2026	\$343,211,329	\$16,057,322	\$359,268,651	(\$1,993,638)	\$357,275,013		\$683,561	\$2,718,184	\$3,401,745
July	2026	\$343,845,161	\$15,412,930	\$359,258,090	(\$2,251,393)	\$357,006,697		\$684,823	\$2,716,143	\$3,400,966
August	2026	\$344,478,992	\$14,767,275	\$359,246,268	(\$2,508,167)	\$356,738,101		\$686,085	\$2,714,099	\$3,400,184
September	2026	\$349,935,021	\$14,376,570	\$364,311,591	(\$2,775,934)	\$361,535,658		\$696,952	\$2,750,600	\$3,447,552
October	2026	\$350,576,425	\$13,718,772	\$364,295,197	(\$3,044,389)	\$361,250,808		\$698,229	\$2,748,432	\$3,446,661
November	2026	\$351,217,830	\$13,059,697	\$364,277,527	(\$3,313,534)	\$360,963,993		\$699,506	\$2,746,250	\$3,445,756

	Γ		Rat	e Base Calculation	n			Monthly Revenue Requirement		
December	2026	\$359,881,946	\$12,868,495	\$372,750,440	(\$3,633,363)	\$369,117,078	• 	\$716,762	\$2,808,280	\$3,525,042
January	2027	\$363,745,566	\$12,592,668	\$376,338,234	(\$3,954,604)	\$372,383,630		\$724,457	\$2,833,132	\$3,557,589
February	2027	\$367,609,186	\$12,309,147	\$379,918,333	(\$4,277,265)	\$375,641,069		\$732,152	\$2,857,915	\$3,590,067
March	2027	\$378,552,592	\$12,422,166	\$390,974,758	(\$4,606,284)	\$386,368,473		\$753,948	\$2,939,530	\$3,693,478
April	2027	\$382,416,212	\$12,109,153	\$394,525,366	(\$4,936,723)	\$389,588,643		\$761,643	\$2,964,029	\$3,725,672
May	2027	\$386,279,833	\$11,788,446	\$398,068,279	(\$5,268,581)	\$392,799,698		\$769,338	\$2,988,460	\$3,757,798
June	2027	\$459,250,826	\$17,135,487	\$476,386,313	(\$5,669,765)	\$470,716,548		\$914,672	\$3,581,259	\$4,495,931
July	2027	\$464,354,171	\$16,759,538	\$481,113,708	(\$6,072,072)	\$475,041,636		\$924,836	\$3,614,164	\$4,539,000
August	2027	\$469,457,515	\$16,373,424	\$485,830,940	(\$6,473,965)	\$479,356,975		\$935,000	\$3,646,996	\$4,581,996
										4
September		\$481,710,964	\$16,385,878 ·	\$498,096,842	(\$6,881,806)	\$491,215,036		\$959,405	\$3,737,213	\$4,696,618
October		\$486,884,627	\$15,969,692	\$502,854,319	(\$7,290,800)	\$495,563,519		\$969,709	\$3,770,297	\$4,740,006
November		\$492,058,290	\$15,543,201	\$507,601,492	(\$7,700,946)	\$499,900,546		\$980,013	\$3,803,294	\$4,783,307
December	_	\$553,720,980	\$19,434,558	\$573,155,538	(\$8,126,409)	\$565,029,129		\$1,102,825	\$4,298,798	\$5,401,623
January	2028	\$555,933,589 ·	\$18,490,621	\$574,424,210	(\$8,555,392)	\$565,868,819		\$1,107,232	\$4,305,187	\$5,412,419
February	2028	\$558,075,880	\$17,537,781	\$575,613,661	(\$8,987,869)	\$566,625,792		\$1,111,499	\$4,310,946	\$5,422,445
March		\$565,362,844	\$16,801,210	\$582,164,055	(\$9,429,483)	\$572,734,572		\$1,126,012	\$4,357,422	\$5,483,434
April	2028	\$567,505,135	\$15,829,590	\$583,334,725	(\$9,874,592)	\$573,460,133		\$1,130,279	\$4,362,942	\$5,493,221
May	2028	\$569,717,744	\$14,858,200	\$584,575,943	(\$10,323,219)	\$574,252,725		\$1,134,686	\$4,368,972	\$5,503,658
June	2028	\$624,996,284	\$17,987,320	\$642,983,603	(\$10,829,783)	\$632,153,821		\$1,244,782	\$4,809,490	\$6,054,272
July	2028	\$627,118,380	\$16,896,970	\$644,015,350	(\$11,340,146)	\$632,675,204		\$1,249,009	\$4,813,456	\$6,062,465
August	2028	\$629,240,477	\$15,802,393	\$645,042,870	(\$11,852,881)	\$633,189,989		\$1,253,236	\$4,817,373	\$6,070,609
		.	*	400	(****			4		40.0000
September		\$636,207,898	\$14,985,404	\$651,193,302	(\$12,374,893)	\$638,818,409		\$1,267,113	\$4,860,195	\$6,127,308
October		\$638,400,313	\$13,877,220	\$652,277,533	(\$12,900,783)	\$639,376,749		\$1,271,480	\$4,864,442	\$6,135,922
November	2028	\$640,592,728	\$12,764,668	\$653,357,396	(\$13,430,551)	\$639,926,845		\$1,275,847	\$4,868,628	\$6,144,475
December	_	\$653,636,372	\$12,317,809	\$665,954,180	(\$14,002,979)	\$651,951,202		\$1,301,826	\$4,960,110	\$6,261,936
January	2029	\$655,658,852	\$11,158,125	\$666,816,976	(\$14,577,055)	\$652,239,921		\$1,305,854	\$4,962,307	\$6,268,161
February	2029	\$657,681,332	\$9,994,412	\$667,675,744	(\$15,152,724)	\$652,523,020		\$1,309,882	\$4,964,461	\$6,274,343
March	2029	\$665,891,898	\$9,259,158	\$675,151,056	(\$15,733,616)	\$659,417,440		\$1,326,235	\$5,016,914	\$6,343,149
April	2029	\$667,844,060	\$8,070,568	\$675,914,628	(\$16,316,077)	\$659,598,551		\$1,330,123	\$5,018,292	\$6,348,415
May	2029	\$669,796,222	\$6,878,091	\$676,674,312	(\$16,900,164)	\$659,774,148		\$1,334,011	\$5,019,628	\$6,353,639
June	2029	\$765,245,733	\$13,290,649	\$778,536,382	(\$17,532,764)	\$761,003,618		\$1,524,115	\$5,789,792	\$7,313,907
July	2029	\$765,245,733	\$11,766,534	\$777,012,267	(\$18,165,495)	\$758,846,772		\$1,524,115	\$5,773,382	\$7,297,497
August	2029	\$765,245,733	\$10,242,419	\$775,488,152	(\$18,797,040)	\$756,691,112		\$1,524,115	\$5,756,982	\$7,281,097
September	2029	\$765,245,733	\$8,718,304	\$773,964,037	(\$19,430,008)	\$754,534,029		\$1,524,115	\$5,740,571	\$7,264,686
October	2029	\$765,245,733	\$7,194,189	\$772,439,922	(\$20,063,155)	\$752,376,767		\$1,524,115	\$5,724,158	\$7,248,273
November	2029	\$765,245,733	\$5,670,074	\$770,915,807	(\$20,696,480)	\$750,219,327		\$1,524,115	\$5,707,744	\$7,231,859
December	2029	\$765,245,733	\$4,145,959	\$769,391,692	(\$21,321,830)	\$748,069,862		\$1,524,115	\$5,691,391	\$7,215,506

Proposed IIP Base Rate for Recovery Period April 1, 2025 to September 30, 2025

IIP Revenue Requirement - Monthly \$828,172
IIP Revenue Requirement for 6 Months \$4,969,030

Base Rate Case Distribution Revenue (1)	<u>TOTAL</u>	<u>RS</u>	_	T/RGT	<u>GS</u>	<u>GST</u>	<u>GP</u>	<u>GT</u>	<u>LTG</u>
Customer Related (Customer, Fixture)	\$ 79,067,579	\$ 48,468,306		1,230,459	\$ 14,318,200	\$ 116,713	\$ 307,351	\$ 527,641	\$14,098,909
Non Customer (kW, kWh, kVar, Misc. Lighting)	\$650,305,048	\$349,431,292	\$ (6,071,853	\$ 229,215,685	<u>\$11,491,515</u>	\$27,249,089	\$20,873,368	\$ 5,972,246
Total Distribution Revenue	\$729,372,627	\$397,899,598	\$	7,302,312	\$ 243,533,885	\$11,608,228	\$27,556,440	\$21,401,009	\$20,071,155
Proposed IIP Revenue Allocation	TOTAL	RS	R	T/RGT	GS	GST	GP	GT	LTG
Non Customer-related Distribution Revenues	\$650,305,048	\$349,431,292	\$	6,071,853	\$ 229,215,685	\$11,491,515	\$27,249,089	\$20,873,368	\$ 5,972,246
% of Non Customer-related Revenues	100.0%	53.7%		0.9%	35.2%	1.8%	4.2%	3.2%	0.9%
Proposed IIP Revenue Requirements Allocation	\$4,969,030	\$2,670,031		\$46,395	\$1,751,454	\$87,808	\$208,212	\$159,495	\$45,634
Projected 6 Months Units for Recovery (2)									
Total kWh		5,279,055,976	8	38,119,784	3,229,725,913				
Total kW						631,324	1,857,433	2,637,601	
Total # of Fixture									1,453,103
IIP Rate (\$/kWh)		\$0.000506	:	\$0.000527	\$0.000542				
IIP Rate (\$/kWh with SUT)		\$0.000540	:	\$0.000562	\$0.000578				
IIP Rate (\$/kW)						\$0.14	\$0.11	\$0.06	
IIP Rate (\$/kW with SUT)						\$0.15	\$0.12	\$0.06	
IIP Rate (\$/Fixture)									\$0.03
IIP Rate (\$/Fixture with SUT)									\$0.03
Proof of Revenues									
Proposed IIP Revenue Recovered through Rates	\$4,962,705	\$2,671,202		\$46,439	\$1,750,511	\$88,385	\$204,318	\$158,256	\$43,593
Difference from IIP Revenue Requirements	-\$6,325	\$1,171		\$44	-\$943	\$578	-\$3,895	-\$1,239	-\$2,041
\$/kWh, \$/kW or \$/Fixture		\$0.0000002	\$	0.0000005	-\$0.0000003	\$0.001	-\$0.002	\$0.000	-\$0.001

⁽¹⁾ BPU Order Docket No. ER23030144, dated 2/14/2024, "2023 Base Rate Filing"

⁽²⁾ Forecast from April 1, 2025 to September 30, 2025

Proposed IIP Base Rate for Recovery Period October 1, 2025 to September 30, 2026

IIP Revenue Requirement - Monthly \$1,831,039
IIP Revenue Requirement for 12 Months \$21,972,466

Base Rate Case Distribution Revenue (1) Customer Related (Customer, Fixture) Non Customer (kW, kWh, kVar, Misc. Lighting) Total Distribution Revenue	TOTAL \$ 79,067,579 \$ 650,305,048 \$ 729,372,627	RS \$ 48,468,306 \$ 349,431,292 \$ 397,899,598	**RT/RGT** \$ 1,230,459 \$ 6,071,853 \$ 7,302,312	GS \$ 14,318,200 \$ 229,215,685 \$ 243,533,885	GST \$ 116,713 \$11,491,515 \$11,608,228	<u>GP</u> \$ 307,351 \$27,249,089 \$27,556,440	<u>GT</u> \$ 527,641 \$20,873,368 \$21,401,009	LTG \$14,098,909 \$ 5,972,246 \$20,071,155
Proposed IIP Revenue Allocation	TOTAL	RS	RT/RGT	GS	GST	GP	GT	LTG
Non Customer-related Distribution Revenues	\$650,305,048	\$349,431,292	\$ 6,071,853	\$ 229,215,685	\$11,491,515	\$27,249,089	\$20,873,368	\$ 5,972,246
% of Non Customer-related Revenues	100.0%	53.7%	0.9%	35.2%	1.8%	4.2%	3.2%	0.9%
Proposed IIP Revenue Requirements Allocation	\$21,972,466	\$11,806,562	\$205,155	\$7,744,725	\$388,275	\$920,691	\$705,268	\$201,790
Projected 12 Months Units for Recovery (2)								
Total kWh Total kW Total # of Fixture		9,597,387,304	187,212,333	6,051,088,965	1,180,872	3,522,895	5,042,947	2,911,952
IIP Rate (\$/kWh) IIP Rate (\$/kWh with SUT)		\$0.001230 \$0.001311	\$0.001096 \$0.001169	\$0.001280 \$0.001365				
IIP Rate (\$/kW) IIP Rate (\$/kW with SUT)					\$0.33 \$0.35	\$0.26 \$0.28	\$0.14 \$0.15	
IIP Rate (\$/Fixture) IIP Rate (\$/Fixture with SUT)								\$0.07 \$0.07
Proof of Revenues Proposed IIP Revenue Recovered through Rates Difference from IIP Revenue Requirements \$/kWh, \$/kW or \$/Fixture	\$21,970,854 -\$1,612	\$11,804,786 -\$1,776 -\$0.0000002	\$205,185 \$29 \$0.0000002	\$7,745,394 \$669 \$0.0000001	\$389,688 \$1,413 \$0.001	\$915,953 -\$4,738 -\$0.001	\$706,013 \$745 \$0.000	\$203,837 \$2,047 \$0.001

⁽¹⁾ BPU Order Docket No. ER20020146, dated 10/28/2020, "2020 Base Rate Filing"

⁽²⁾ Forecast from October 1, 2025 to September 30, 2026

Proposed IIP Base Rate for Recovery Period October 1, 2026 to September 30, 2027

IIP Revenue Requirement - Monthly \$3,401,745
IIP Revenue Requirement for 12 Months \$40,820,942

Base Rate Case Distribution Revenue (1) Customer Related (Customer, Fixture) Non Customer (kW, kWh, kVar, Misc. Lighting) Total Distribution Revenue	TOTAL \$ 79,067,579 \$ 650,305,048 \$ 729,372,627	<u>RS</u> \$ 48,468,306 <u>\$ 349,431,292</u> \$ 397,899,598	**RT/RGT** \$ 1,230,459 \$ 6,071,853 \$ 7,302,312	GS \$ 14,318,200 \$ 229,215,685 \$ 243,533,885	GST \$ 116,713 \$11,491,515 \$11,608,228	<u>GP</u> \$ 307,351 \$27,249,089 \$27,556,440	GT \$ 527,641 \$20,873,368 \$21,401,009	LTG \$14,098,909 \$ 5,972,246 \$20,071,155
Proposed IIP Revenue Allocation	TOTAL	RS	RT/RGT	GS	GST	GP	GT	LTG
Non Customer-related Distribution Revenues	\$650,305,048	\$349,431,292	\$ 6,071,853	\$ 229,215,685	\$11,491,515	\$27,249,089	\$20,873,368	\$ 5,972,246
% of Non Customer-related Revenues	100.0%	53.7%	0.9%	35.2%	1.8%	4.2%	3.2%	0.9%
Proposed IIP Revenue Requirements Allocation	\$40,820,942	\$21,934,497	\$381,142	\$14,388,325	\$721,345	\$1,710,480	\$1,310,263	\$374,890
Projected 12 Months Units for Recovery (2)								
Total kWh Total kW Total # of Fixture		9,572,293,822	186,795,406	5,834,432,397	1,139,480	3,412,078	4,870,803	2,919,658
IIP Rate (\$/kWh) IIP Rate (\$/kWh with SUT)		\$0.002291 \$0.002443	\$0.002040 \$0.002175	\$0.002466 \$0.002629				
IIP Rate (\$/kW) IIP Rate (\$/kW with SUT)					\$0.63 \$0.67	\$0.50 \$0.53	\$0.27 \$0.29	
IIP Rate (\$/Fixture) IIP Rate (\$/Fixture with SUT)								\$0.13 \$0.14
Proof of Revenues Proposed IIP Revenue Recovered through Rates Difference from IIP Revenue Requirements \$/kWh, \$/kW or \$/Fixture	\$40,817,482 -\$3,460	\$21,930,125 -\$4,372 -\$0.0000005	\$381,063 -\$80 -\$0.0000004	\$14,387,710 -\$614 -\$0.0000001	\$717,872 -\$3,473 -\$0.003	\$1,706,039 -\$4,440 -\$0.001	\$1,315,117 \$4,854 \$0.001	\$379,556 \$4,666 \$0.002

⁽¹⁾ BPU Order Docket No. ER20020146, dated 10/28/2020, "2020 Base Rate Filing"

⁽²⁾ Forecast from October 1, 2026 to September 30, 2027

Proposed IIP Base Rate for Recovery Period October 1, 2027 to March 30, 2028

IIP Revenue Requirement - Monthly \$4,495,931
IIP Revenue Requirement for 6 Months \$26,975,584

Base Rate Case Distribution Revenue (1)	TOTAL	<u>RS</u>	RT/RGT	<u>GS</u>	<u>GST</u>	<u>GP</u>	<u>GT</u>	<u>LTG</u>
Customer Related (Customer, Fixture)	\$ 79,067,579	\$ 48,468,306	\$ 1,230,459	\$ 14,318,200	\$ 116,713	\$ 307,351	\$ 527,641	\$14,098,909
Non Customer (kW, kWh, kVar, Misc. Lighting)	\$650,305,048	\$349,431,292	\$ 6,071,853	\$ 229,215,685	<u>\$11,491,515</u>	\$27,249,089	\$20,873,368	\$ 5,972,246
Total Distribution Revenue	\$729,372,627	\$397,899,598	\$ 7,302,312	\$ 243,533,885	\$11,608,228	\$27,556,440	\$21,401,009	\$20,071,155
Proposed IIP Revenue Allocation	TOTAL	RS	RT/RGT	GS	GST	GP	GT	LTG
Non Customer-related Distribution Revenues	\$650,305,048	\$349,431,292	\$ 6,071,853	\$ 229,215,685	\$11,491,515	\$27,249,089	\$20,873,368	\$ 5,972,246
% of Non Customer-related Revenues	100.0%	53.7%	0.9%	35.2%	1.8%	4.2%	3.2%	0.9%
Proposed IIP Revenue Requirements Allocation	\$26,975,584	\$14,494,910	\$251,869	\$9,508,195	\$476,684	\$1,130,331	\$865,857	\$247,737
Projected 6 Months Units for Recovery (2)								
Total kWh		4,326,184,034	98,977,637	2,755,431,129				
Total kW		, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	,, - ,	526,061	1,608,197	2,316,879	
Total # of Fixture								1,462,769
IIP Rate (\$/kWh)		\$0.003351	\$0.002545	\$0.003451				
IIP Rate (\$/kWh with SUT)		\$0.003573	\$0.002714	\$0.003680				
IIP Rate (\$/kW)					\$0.91	\$0.70	\$0.37	
IIP Rate (\$/kW with SUT)					\$0.97	\$0.75	\$0.39	
IIP Rate (\$/Fixture)								\$0.17
IIP Rate (\$/Fixture with SUT)								\$0.18
Proof of Revenues								
Proposed IIP Revenue Recovered through Rates	\$26,968,302	\$14,497,043	\$251,898	\$9,508,993	\$478,715	\$1,125,738	\$857,245	\$248,671
Difference from IIP Revenue Requirements	-\$7,282	\$2,132	\$29	\$798	\$2,031	-\$4,593	-\$8,612	
\$/kWh, \$/kW or \$/Fixture		\$0.000005	\$0.000003	\$0.0000003	\$0.004	-\$0.003	-\$0.004	\$0.001

⁽¹⁾ BPU Order Docket No. ER20020146, dated 10/28/2020, "2020 Base Rate Filing"

⁽²⁾ Forecast from October 1, 2027 to March 30, 2028

Proposed IIP Base Rate for Recovery Period April 1, 2028 to March 31, 2029

IIP Revenue Requirement - Monthly \$5,401,623
IIP Revenue Requirement for 12 Months \$64,819,480

Base Rate Case Distribution Revenue (1) Customer Related (Customer, Fixture) Non Customer (kW, kWh, kVar, Misc. Lighting) Total Distribution Revenue	TOTAL \$ 79,067,579 \$ 650,305,048 \$ 729,372,627	RS \$ 48,468,306 <u>\$ 349,431,292</u> \$ 397,899,598	**RT/RGT** \$ 1,230,459 \$ 6,071,853 \$ 7,302,312	GS \$ 14,318,200 \$ 229,215,685 \$ 243,533,885	\$\frac{\text{GST}}{116,713} \\ \frac{\text{511,491,515}}{\text{511,608,228}}	GP \$ 307,351 \$27,249,089 \$27,556,440	GT \$ 527,641 \$20,873,368 \$21,401,009	<u>LTG</u> \$14,098,909 <u>\$ 5,972,246</u> \$20,071,155
Proposed IIP Revenue Allocation	TOTAL	RS	RT/RGT	GS	GST	GP	GT	LTG
Non Customer-related Distribution Revenues	\$650,305,048	\$349,431,292	\$ 6,071,853	\$ 229,215,685	\$11,491,515	\$27,249,089	\$20,873,368	\$ 5,972,246
% of Non Customer-related Revenues	100.0%	53.7%	0.9%	35.2%	1.8%	4.2%	3.2%	0.9%
Proposed IIP Revenue Requirements Allocation	\$64,819,480	\$34,829,738	\$605,215	\$22,847,188	\$1,145,422	\$2,716,067	\$2,080,563	\$595,287
Projected 12 Months Units for Recovery (2)								
Total kWh Total kW Total # of Fixture		9,576,603,305	186,578,008	5,520,351,924	1,073,083	3,227,753	4,629,771	2,931,360
IIP Rate (\$/kWh) IIP Rate (\$/kWh with SUT)		\$0.003637 \$0.003878	\$0.003244 \$0.003459					
IIP Rate (\$/kW) IIP Rate (\$/kW with SUT)					\$1.07 \$1.14	\$0.84 \$0.90	\$0.45 \$0.48	
IIP Rate (\$/Fixture) IIP Rate (\$/Fixture with SUT)								\$0.20 \$0.21
<u>Proof of Revenues</u> Proposed IIP Revenue Recovered through Rates Difference from IIP Revenue Requirements \$/kWh, \$/kW or \$/Fixture	\$64,813,282 -\$6,197	\$34,830,106 \$368 \$0.0000000	\$605,259 \$44 \$0.0000002	\$1,549	. ,	\$2,711,313 -\$4,754 -\$0.001	\$2,083,397 \$2,834 \$0.001	\$586,272 -\$9,015 -\$0.003

- (1) BPU Order Docket No. ER20020146, dated 10/28/2020, "2020 Base Rate Filing"
- (2) Forecast from April 1, 2028 to March 31, 2029

Proposed IIP Base Rate for Recovery Period April 1, 2029 to September 30, 2029

IIP Revenue Requirement - Monthly \$6,261,936
IIP Revenue Requirement for 6 Months \$37,571,617

Base Rate Case Distribution Revenue (1)	TOTAL	RS	RT/RGT	<u>GS</u>	<u>GST</u>	<u>GP</u>	<u>GT</u>	LTG
Customer Related (Customer, Fixture)	\$ 79,067,579	\$ 48,468,306	\$ 1,230,459	\$ 14,318,200	\$ 116,713	\$ 307,351	\$ 527,641	\$14,098,909
Non Customer (kW, kWh, kVar, Misc. Lighting)	\$650,305,048	\$349,431,292	\$ 6,071,853	\$ 229,215,685	\$11,491,515	\$27,249,089	\$20,873,368	\$ 5,972,246
Total Distribution Revenue	\$729,372,627	\$397,899,598	\$ 7,302,312	\$ 243,533,885	\$11,608,228	\$27,556,440	\$21,401,009	\$20,071,155
Proposed IIP Revenue Allocation	TOTAL	RS	RT/RGT	GS	GST	GP	GT	LTG
Non Customer-related Distribution Revenues	\$650,305,048	\$ 349,431,292	\$ 6,071,853	\$ 229,215,685	\$11,491,515	\$27,249,089	\$20,873,368	\$ 5,972,246
% of Non Customer-related Revenues	100.0%	53.7%	0.9%	35.2%	1.8%	4.2%	3.2%	0.9%
Proposed IIP Revenue Requirements Allocation	\$37,571,617	\$20,188,523	\$350,804	\$13,243,022	\$663,927	\$1,574,326	\$1,205,967	\$345,049
Projected 6 Months Units for Recovery (2)								
Total kWh		5,258,939,165	87,832,244	2,747,697,911				
Total kW					544,518	1,616,799	2,306,898	
Total # of Fixture								1,468,608
IIP Rate (\$/kWh)		\$0.003839	\$0.003994	\$0.004820				
IIP Rate (\$/kWh with SUT)		\$0.004093	\$0.004259	\$0.005139				
IIP Rate (\$/kW)					\$1.22	\$0.97	\$0.52	
IIP Rate (\$/kW with SUT)					\$1.30	\$1.03	\$0.55	
IIP Rate (\$/Fixture)								\$0.23
IIP Rate (\$/Fixture with SUT)								\$0.25
Dreaf of Payanusa							<u> </u>	
Proof of Revenues Proposed IIP Revenue Recovered through Rates	\$37,553,747	\$20,189,067	\$350,802	\$13,243,904	\$664,312	\$1,568,295	\$1,199,587	\$337,780
Difference from IIP Revenue Requirements	-\$17,870	\$544	-\$2	\$882	\$386	-\$6,032	-\$6,380	-\$7,269
\$/kWh, \$/kW or \$/Fixture		\$0.000001	\$0.000000	\$0.0000003	\$0.001	-\$0.004	-\$0.003	-\$0.005

⁽¹⁾ BPU Order Docket No. ER20020146, dated 10/28/2020, "2020 Base Rate Filing"

⁽²⁾ Forecast from April 1, 2029 to September 30, 2029

Proposed IIP Base Rate for Recovery Period October 1, 2029 to September 30, 2030

IIP Revenue Requirement - Monthly \$7,313,907
IIP Revenue Requirement for 12 Months \$87,766,883

Base Rate Case Distribution Revenue (1) Customer Related (Customer, Fixture) Non Customer (kW, kWh, kVar, Misc. Lighting) Total Distribution Revenue	TOTAL \$ 79,067,579 \$ 650,305,048 \$ 729,372,627	RS \$ 48,468,306 \$ 349,431,292 \$ 397,899,598	**RT/RGT** \$ 1,230,459 \$ 6,071,853 \$ 7,302,312	GS \$ 14,318,200 \$ 229,215,685 \$ 243,533,885	\$\frac{\text{GST}}{116,713}\frac{\text{\$11,491,515}}{\text{\$11,608,228}}	GP \$ 307,351 \$27,249,089 \$27,556,440	GT \$ 527,641 \$20,873,368 \$21,401,009	LTG \$14,098,909 \$ 5,972,246 \$20,071,155
Proposed IIP Revenue Allocation	TOTAL	RS	RT/RGT	GS	GST	GP	GT	LTG
Non Customer-related Distribution Revenues	\$650,305,048	\$349,431,292	\$ 6,071,853	\$ 229,215,685	\$11,491,515	\$27,249,089	\$20,873,368	\$ 5,972,246
% of Non Customer-related Revenues	100.0%	53.7%	0.9%	35.2%	1.8%	4.2%	3.2%	0.9%
Proposed IIP Revenue Requirements Allocation	\$87,766,883	\$47,160,168	\$819,473	\$30,935,553	\$1,550,925	\$3,677,609	\$2,817,125	\$806,030
Projected 12 Months Units for Recovery (2)								
Total kWh Total kW Total # of Fixture		9,600,502,874	187,051,460	5,166,605,025	1,006,658	3,044,336	4,375,516	2,943,218
IIP Rate (\$/kWh) IIP Rate (\$/kWh with SUT)		\$0.004912 \$0.005237	\$0.004381 \$0.004671	\$0.005988 \$0.006385				
IIP Rate (\$/kW) IIP Rate (\$/kW with SUT)					\$1.54 \$1.64	\$1.21 \$1.29	\$0.64 \$0.68	
IIP Rate (\$/Fixture) IIP Rate (\$/Fixture with SUT)								\$0.27 \$0.29
<u>Proof of Revenues</u> Proposed IIP Revenue Recovered through Rates Difference from IIP Revenue Requirements \$/kWh, \$/kW or \$/Fixture	\$87,743,672 -\$23,210	\$47,157,670 -\$2,498 -\$0.0000003	\$819,472 -\$1 \$0.0000000	\$2,078	\$1,550,253 -\$672 -\$0.001	\$3,683,646 \$6,038 \$0.002	\$2,800,330 -\$16,794 -\$0.004	\$794,669 -\$11,361 -\$0.004

⁽¹⁾ BPU Order Docket No. ER20020146, dated 10/28/2020, "2020 Base Rate Filing"

⁽²⁾ Forecast from October 1, 2029 to September 30, 2030

Schedule CAP-4 (Amended)

Page 1 of 1

Proposed Effect Proposed Months of		IIP1 4/1/2025	IIP2 10/1/2025	IIP3 10/1/2026	IIP4 10/1/2027	HP5 4/1/2028	IIP6 4/1/2029	IIP7 10/1/2029
Froposed Worldis of	Recovery>	6	10/1/2023	12	6	12	6	10/1/2029
	L				-			12
	_			Class Avera	age Per Custom	er/Fixture		
	Current	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed
	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Rate Class	Bill (1)	Bill (2)	<u>Bill (2)</u>	<u>Bill (2)</u>	Bill (2)	Bill (2)	Bill (2)	Bill (2)
Residential (RS)	\$123.96	\$124.38	\$124.98	\$125.85	\$126.73	\$126.97	\$127.14	\$128.03
Residential Time of Day (RT/RGT)	\$169.66	\$170.27	\$170.95	\$172.07	\$172.70	\$173.49	\$174.33	\$174.83
General Service – Secondary (GS)	\$620.87	\$623.26	\$626.52	\$631.74	\$636.09	\$639.12	\$642.12	\$647.27
eneral Service - Secondary Time of Day (GST)	\$32,147.75	\$32,226.34	\$32,335.70	\$32,506.98	\$32,666.96	\$32,758.56	\$32,844.20	\$33,026.19
General Service – Primary (GP)	\$44,362.45	\$44,448.55	\$44,563.36	\$44,749.92	\$44,900.60	\$45,008.24	\$45,108.69	\$45,288.08
General Service – Transmission (GT)	\$112,366.71	\$112,575.48	\$112,818.22	\$113,243.62	\$113,588.46	\$113,849.77	\$114,064.64	\$114,462.01
Lighting (Average Per Fixture)	\$12.17	\$12.20	\$12.25	\$12.31	\$12.35	\$12.38	\$12.42	\$12.46
				Incremen	tal Monthly Inc	rease in \$		
	Current	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed
	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Rate Class	Bill (1)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)
Residential (RS)	\$123.96	\$0.42	\$0.60	\$0.87	\$0.88	\$0.24	\$0.17	\$0.89
Residential Time of Day (RT/RGT)	\$169.66	\$0.61	\$0.68	\$1.12	\$0.63	\$0.79	\$0.84	\$0.50
General Service - Secondary (GS)	\$620.87	\$2.39	\$3.26	\$5.22	\$4.35	\$3.03	\$3.00	\$5.15
eneral Service - Secondary Time of Day (GST)	\$32,147.75	\$78.59	\$109.36	\$171.28	\$159.98	\$91.60	\$85.64	\$181.99
General Service - Primary (GP)	\$44,362.45	\$86.10	\$114.81	\$186.56	\$150.68	\$107.64	\$100.45	\$179.39
General Service – Transmission (GT)	\$112,366.71	\$208.77	\$242.74	\$425.40	\$344.84	\$261.31	\$214.87	\$397.37
Lighting (Average Per Fixture)	\$12.17	\$0.03	\$0.04	\$0.07	\$0.04	\$0.03	\$0.03	\$0.05
				Increment	al Monthly Incr	ease by %		
	Current	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed
	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Rate Class	Bill (1)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)
Residential (RS)	\$123.96	0.3%	0.5%	0.7%	0.7%	0.2%	0.1%	0.7%
Residential Time of Day (RT/RGT)	\$169.66	0.4%	0.4%	0.7%	0.4%	0.5%	0.5%	0.3%
General Service - Secondary (GS)	\$620.87	0.4%	0.5%	0.8%	0.7%	0.5%	0.5%	0.8%
eneral Service - Secondary Time of Day (GST)	\$32,147.75	0.2%	0.3%	0.5%	0.5%	0.3%	0.3%	0.6%
General Service – Primary (GP)	\$44,362.45	0.2%	0.3%	0.4%	0.3%	0.2%	0.2%	0.4%
General Service – Transmission (GT)	\$112,366.71	0.2%	0.2%	0.4%	0.3%	0.2%	0.2%	0.3%
Lighting (Average Per Fixture)	\$12.17	0.2%	0.4%	0.6%	0.3%	0.2%	0.3%	0.4%
	_			Typical Resid	ential Custome	r on RS Rate		
	Current	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed
	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	Bill (1)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)	Bill (2)
		4/1/2025	10/1/2025	10/1/2026	10/1/2027	4/1/2028	4/1/2029	10/1/2029
Residential (RS) using 777 kW per Month	\$121.80	\$122.22	\$122.82	\$123.70	\$124.58	\$124.82	\$124.99	\$125.87
Incremental Increase		\$0.42	\$0.60	\$0.88	\$0.88	\$0.24	\$0.17	\$0.89
% of Incremental Increase		0.3%	0.5%	0.7%	0.7%	0.2%	0.1%	0.7%
Cumulative Increase from Current		\$0.42	\$1.02	\$1.90	\$2.78	\$3.01	\$3.18	\$4.07
% of Cumulative Increase from Current		0.3%	0.8%	1.6%	2.3%	2.5%	2.6%	3.3%

 ^{1} Rates effective 2/1/2024, except for Customer Charge and Distribution Charge effective 6/1/2024
 (2) IIP rates rolled into Base Rates effective as proposed, all other rates unchanged from February 1, 2024.